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The neural mechanisms conferring reduced motivation, as observed
in depressed individuals, is poorly understood. Here, we examine in
rodents if reduced motivation to exert effort is controlled by
transmission from the lateral habenula (LHb), a nucleus overactive
in depressed-like states, to the rostromedial tegmental nucleus
(RMTg), a nucleus that inhibits dopaminergic neurons. In an aversive
test wherein immobility indicates loss of effort, LHb→RMTg trans-
mission increased during transitions into immobility, driving
LHb→RMTg increased immobility, and inhibiting LHb→RMTg pro-
duced the opposite effects. In an appetitive test, driving LHb→RMTg
reduced the effort exerted to receive a reward, without affecting the
reward’s hedonic property. Notably, LHb→RMTg stimulation only
affected specific aspects of these motor tasks, did not affect all motor
tasks, and promoted avoidance, indicating that LHb→RMTg activity
does not generally reduce movement but appears to carry a
negative valence that reduces effort. These results indicate that
LHb→RMTg activity controls the motivation to exert effort and may
contribute to the reduced motivation in depression.

lateral habenula | rostromedial tegmental nucleus | motivation |
optogenetics | fiber photometry

Depressive disorders cause significant morbidity and mortality
in the human population (1). A number of potentially ab-

errant neural mechanisms have been characterized, which may
reflect the multiplicity of depressive symptoms (2–9). While re-
cent studies in humans (10–14) and rodents (15–23) suggest that
excessive lateral habenula (LHb) activity may contribute to de-
pression, the impact of LHb hyperactivity on an individual’s level
of motivation has not been examined.
Motivation can be defined as the propensity of an organism to

exert effort to move toward a rewarding, or away from an aversive,
stimulus (24). The amount of effort an individual exerts to achieve
a goal is believed to depend on a complex calculation of the cost
required to perform a defined action and the perceived benefit
gained from that action (24). Maladaptive dysfunction in neural
pathways encoding such information (e.g., if the cost of performing
an action is overvalued or if the perceived benefit is undervalued)
can lead to behavioral deficits such as the reduced motivation seen
in depression (25, 26). The specific neural pathways underlying
such motivational deficits in depression are unknown.
The LHb, a predominantly glutamatergic nucleus, receives in-

puts from several limbic nuclei associated with motivational states
(27–31). It provides a major disynaptic inhibitory output, through
the midbrain GABAergic rostromedial tegmental nucleus (RMTg)
to monoaminergic centers (32). In particular, the RMTg transmits
reward-related signals from the LHb to dopamine neurons, which
are suggested to play a central role in reinforcing or discouraging
ongoing action (33, 34). LHb→RMTg signals have been shown to
promote active, passive, and conditioned behavioral avoidance
(35). However, the relation between these signals and motivation
has not been examined.
It is notable that monoaminergic output has been associated

with increased motivated behavior and positive affective states
(36, 37). Increasing dopaminergic cell activity in the ventral teg-
mental area increases motivated behavioral responses in a chal-
lenging task, and their negative modulation decreases such responses
(38). The impact of reduced mesolimbic system activity has been
characterized as an inflation in the perceived cost of exerting

effort, leading to immobility (24). We thus reasoned that the
LHb→RMTg pathway, by inhibiting monoaminergic centers, could
control motivated behavior; in particular, we hypothesized that this
pathway controls the motivation to exert effort.

Results
LHb→RMTg Activity Increases with Transitions to Immobility in the
Forced Swim Test. To examine LHb→RMTg activity in a behaving
animal, the LHb of rats was injected with an adeno-associated
virus (AAV) encoding the calcium indicator GCaMP6s (AAV-
hSyn-GCaMP6s). An optical fiber was implanted over the RMTg
to measure the activity of axon terminals from LHb→RMTg
(Fig. 1A, Fig. S1, and SI Experimental Procedures). Control rats
received the same surgery but were injected with an AAV
encoding GFP (AAV-hSyn-GFP). Four weeks later, GCaMP6s
expression was detected in cell bodies of the LHb and at the axon
terminals of those fibers in the RMTg (Fig. 1A). Changes in
fluorescence, indicating changes in neural activity (39), were
recorded with a custom-built fiber photometry system (SI Ex-
perimental Procedures and ref. 40). To assess motivation, rats
were subjected to the forced swim test (FST) (41), an aversive
inescapable environment in which a rat’s effort is indicated by
the persistence of its movement (Fig. 1B). Over the course of the
test, rats spend a larger fraction of time immobile. These periods
of immobility can be used as a measure of reduced motivation in
rodents (29, 38, 42). The rats’ behavior was captured using a
digital camera, and immobility bouts were determined using an
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unbiased MATLAB script that was validated against human
scorers (Fig. S2 and SI Experimental Procedures).
The onset of immobility bouts coincided with increased fluo-

rescence signal (Fig. 1 C and D), as indicated by a significant
negative correlation between the rat’s movement about the onset
of an immobility bout and the neural activity of the LHb→RMTg
(Fig. 1E, Left; r = −0.27 ± 0.01, P < 0.0001; rat n = 7, test n = 12,
bout n = 298; see SI Experimental Procedures for measurements
and statistical tests). Such correlation was not observed in rats
injected with AAV-GFP (r = 0.05 ± 0.02; rat n = 2, test n = 5,
bout n = 167). When the same analysis was made at periods of
mobility (above threshold), no correlation was measured in rats
expressing GCaMP6s (Fig. 1E, Right; r = 0.03 ± 0.04, P > 0.05; rat
n = 7, test n = 12, bout n = 424) or GFP (r = −0.02 ± 0.06, P > 0.05;
rat n = 2, test n = 5, bout n = 101). These findings support the view
that increased neural activity in the LHb→RMTg correlates with
reduced motivation to exert effort in an aversive context; fur-
thermore, this correlation is not generally related to movement, as
it occurs only during specific periods (i.e., at immobility threshold,
when an animal would be expected to have low motivation).

Driving LHb→RMTg Increases Immobility in the FST. To test the hy-
pothesis that the activity of the LHb→RMTg is sufficient to re-
duce the motivation to exert effort, the LHb was injected with an
AAV encoding a light-dependent excitatory opsin, oChIEF (43),
fused to the red fluorescent protein tdTomato (AAV-hSyn-oChIEF-

tdTomato) or a control fluorophore (AAV-hSyn-tdTomato), and an
optical fiber was implanted over the RMTg (Fig. 2A and Fig. S3).
Single-unit recordings in anesthetized rats confirmed that brief,
5-ms pulses of blue light (∼15 mW at optical fiber tip) delivered
at 25 Hz was sufficient to drive postsynaptic activity in RMTg
neurons (Fig. S4).
Rats were subjected to 20-min FST sessions, as with the fiber

photometry recordings, with each session consisting of alternating
2-min epochs with and without unilateral 25-Hz optical stimulation
(Fig. 2B). Stimulation of the LHb→RMTg was sufficient to de-
crease a rat’s mobility during 2-min epochs, compared with the
average mobility of the preceding and proceeding nonstimulation
epochs [Fig. 2C; 3,300 ± 100 significant motion pixels (smp) (44)]
without light vs. 2,700 ± 100 smp with light, P < 0.001). Notably,
during stimulation periods, an animal’s average mobility (when the
animal was above the immobility threshold) was unaffected (Fig.
2D; 3,500 ± 100 smp without light vs. 3,400 ± 100 smp with light,
P > 0.05). This suggests that stimulation did not affect a rat’s
general ability to move. Rather, the overall effect of stimulation on
mobility was mostly due to an increase in the fraction of time a rat
spent below the mobility threshold (Fig. 2E; 0.15 ± 0.01 without
light vs. 0.32 ± 0.02 with light, P < 0.001). We observed that these
immobility events occurred more often (18 ± 3 events without light
vs. 33 ± 1 events with light, P < 0.001) and were longer in duration
(3.7 ± 0.6 s without light vs. 5.6 ± 0.3 s with light, P < 0.05) during
activation of the LHb→RMTg. Stimulation had no significant ef-
fect on the mobility of control rats expressing tdTomato (Fig. 2 C–
E; mobility: 3,300 ± 70 smp without light vs. 3,300 ± 80 smp with
light, P > 0.05; mobility above threshold: 3,600 ± 60 smp without
light vs. 3,600 ± 80 smp with light, P > 0.05; fraction immobility:
0.19 ± 0.01 without light vs. 0.17 ± 0.02 with light, P > 0.05), with no
change in the number (30 ± 4 events without light vs. 26 ± 3 events
with light, P > 0.05) or the duration (3.4 ± 0.3 s without light vs. 7 ±
3 s with light, P > 0.05) of immobility events. These results support
the view that stimulation of the LHb→RMTg neural pathway is
sufficient to reduce motivation to exert effort in an aversive context.

Inhibiting LHb→RMTg Reduces Immobility in the FST. To test the
hypothesis that activity in the LHb→RMTg is necessary to drive
immobility in the same aversive swim test, rats were injected in
the LHb with an AAV encoding the light-dependent proton
pump eArch3.0 fused to a yellow fluorescent protein (AAV-
hSyn-eArch3.0-eYFP) or with GFP (AAV-EF1α-GFP) as a
control. Optical fibers (200-μm diameter) were implanted over
the RMTg (Fig. 3A and Fig. S5). As above, rats were examined
during a 20 min swim session with alternating 2-min epochs of no
light and constant green light. When light was applied, a rat’s
mobility in an epoch with light was significantly higher than the
average mobility of the flanking epochs without light (Fig. 3 B
and C; 3,620 ± 90 smp without light vs. 3,770 ± 90 smp with light,
P < 0.05). Furthermore, light delivery decreased the fraction of
time the rat spent immobile (Fig. 3E; 0.25 ± 0.02 without light vs.
0.17 ± 0.02 with light, P < 0.01). We observed that these im-
mobility events occurred less often (33 ± 1 events without light
vs. 22 ± 2 events with light, P < 0.05) and were shorter in du-
ration (4.7 ± 0.2 s without light vs. 3.8 ± 0.1 s with light, P < 0.05)
when light was delivered to the RMTg. No significant change was
observed in rats expressing GFP (Fig. 3 C–E; mobility: 3,360 ±
90 smp without light vs. 3,400 ± 100 smp with light, P > 0.05;
mobility above threshold: 3,710 ± 80 smp without light vs.
3,700 ± 100 smp with light, P > 0.05; fraction immobility: 0.21 ±
0.02 without light vs. 0.20 ± 0.01 with light, P > 0.05), with no
change in the number of events (33 ± 2 events without light vs.
31 ± 4 events with light, P > 0.05) or their duration (3.8 ± 0.3 s
without light vs. 3.4 ± 0.2 s with light, P > 0.05).
These results are generally opposite compared with those

observed with blue light activation of oChIEF, supporting the
views that green light delivery to eArch3.0-expressing terminals
inhibits their activity (45, 46) and that LHb→RMTg activity is
necessary to produce the normal level of immobility in the
aversive context of the FST.
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Fig. 1. Activity of LHb→RMTg is coincident with immobility bouts in the
FST. (A, Left) AAV encoding GCaMP6s were injected into LHb, and a 400-μm
optical fiber was implanted over the RMTg. (A, Right) Diagram and fluo-
rescence images. (Scale bar, 500 μm.) 3V, third ventricle. (B) Diagram of re-
cording setup. Video and CCD cameras captured rat mobility and changes in
fluorescence in RMTg, respectively. (C) Representative example of change in
fluorescence (Top) and mobility (Bottom) during FST; immobility threshold is
indicated. (D) Representative examples (Top) and mean ± SEM (Bottom) of
change in fluorescence (Left) and mobility (Right), aligned to onset of im-
mobility bout. (E) Graph of correlation (Pearson’s) between fluorescence and
mobility for rats (circles indicate individuals; bar indicates mean) expressing
indicated constructs, aligned about the onset of immobility bouts (Left) or
during periods of mobility (Right). ****P < 0.0001. AU, arbitrary unit; ns, not
significant.
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Activating LHb→RMTg Reduces Effort Exerted to Gain Rewards in an
Appetitive Test. To examine whether increased activity at the
LHb→RMTg was sufficient to decrease motivation in an appe-
titive context, rats were tested in a progressive ratio (PR) oper-
ant task, which is commonly used to evaluate motivation in
rodents (47). In this test, increasing work (more lever presses) is
required to receive a reward as trials proceed. The maximal work
a rat exerts to receive a reward, the breaking point (BP), is used
as a measure of its motivation (Fig. 4A).
We trained rats injected and implanted as in Fig. 2 to press a

lever to obtain a sucrose reward. After training, we tested rats with
a PR schedule of reinforcement (SI Experimental Procedures). In
alternating sessions (one session per day), rats were or were not
exposed to blue light through an optical fiber (trains of 25 Hz for
1 s every 2 s) during the entire session. With stimulation, rats’ BPs
were significantly reduced by more than 40% compared with
nonstimulation sessions (Fig. 4 B, i; BP without light 35 ± 4 vs. BP
with light 21 ± 3, P < 0.001). This indicates that driving
LHb→RMTg activity is sufficient to reduce the work performed
by a rat to receive a reward. LHb→RMTg stimulation significantly
increased the time between receiving a reward and the subsequent
lever press (Fig. 4 B, ii; 36 ± 5 s without light vs. 67 ± 12 s with
light, P < 0.05). Interestingly, during a bout of lever presses before
a reward, the time interval between lever presses was unaffected
(Fig. 4 B, iii; 0.85 ± 0.04 s without light vs. 0.88 ± 0.05 s with light,

P > 0.05), suggesting that once a threshold motivation to work is
achieved, the vigor of a rat’s performance is not modified. Stim-
ulation did not affect a rat’s preference for sucrose water over
plain water [sucrose preference test (SPT)], indicating that the
hedonic value of the reward is unaffected by stimulation (Fig. 4C;
84 ± 4% of water consumed contained sucrose without light vs.
73 ± 6% with light, P > 0.05). Additionally, LHb→RMTg acti-
vation did not reduce thirst as revealed by the total liquid con-
sumed (Fig. 4C; 0.037 ± 0.002 g of liquid per gram of body weight
without light vs. 0.032 ± 0.003 g of liquid per gram of body weight
with light, P > 0.05). These results indicate that the motivation to
exert effort to receive a reward, rather than the value of the reward
or the ability to perform the task, is affected by LHb→RMTg
activation.

Activating LHb→RMTg During an Open Field Test. We next tested
animals in the open field (OF) (38), normally used to determine
if a manipulation has nonspecific effects on movement. Rats
expressing oChIEF-tdTomato or the control fluorophore tdTomato
were placed in an OF, and movement was monitored during a
10-min period during which alternating 2-min epochs with and
without unilateral 25-Hz optical stimulation were delivered (Fig.
5). When light was applied, a rat’s mobility in an epoch with light
was significantly lower than that of the flanking epochs without
light (Fig. 5). Both low and high levels of movement were affected
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Fig. 2. Stimulation of LHb→RMTg increases immo-
bility in FST. (A) AAV encoding the light-sensitive
cation channel oChIEF-tdTomato (n = 13) (or tdTomato
alone, n = 7) was injected into the LHb, and a 200-μm
optical fiber was implanted over the RMTg. (B) Rep-
resentative example of change in mobility during light
delivery (blue); brown shading indicates periods of
immobility. (C–E, Top): (C, Left) Plot of mean mobility
(gray indicates individual rats; red indicates mean ±
SEM) during periods of light (blue) or no light (white).
(C, Right) Mean ± SEM for indicated periods. (D) Same
as C, for mobility values above immobility threshold.
(E) Same as C, for time spent immobile. (C–E, Bottom)
Same as C–E, Top, for rats expressing tdTomato.
***P < 0.001; paired Student’s t test. AU, arbitrary
unit; ns, not significant.
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by light (Fig. 5; mobility: 3,600 ± 100 smp without light vs. 2,200 ±
200 smp with light, P < 0.001; mobility above threshold: 4,400 ±
100 smp without light vs. 3,300 ± 200 smp with light, P < 0.01;

fraction immobility: 0.23 ± 0.02 without light vs. 0.46 ± 0.05 with
light, P < 0.001). Stimulation had no significant effect on the
mobility of control rats expressing tdTomato (Fig. 5; mobility:
2,300 ± 200 smp without light vs. 2,400 ± 200 smp with light, P >
0.05; mobility above threshold: 3,500 ± 100 smp without light vs.
3,500 ± 200 smp with light, P > 0.05; fraction immobility: 0.44 ±
0.05 without light vs. 0.40 ± 0.05 with light, P > 0.05).
While the OF test has been used to measure basic motor

function, this test is also a measure of a rat’s motivation to ex-
plore an environment (48, 49). Since there was no effect of
LHb→RMTg stimulation on suprathreshold mobility in the FST
nor on the inter–lever-press interval in the PR test, the more
parsimonious interpretation is that the effect of such stimulation
on the OF test is due to reduced motivation to explore (50, 51)
and is not an effect on general motor function.

Activating LHb→RMTg Has No Effect on Motor Coordination and Is
Aversive. As a further test to distinguish between an effect of
LHb→RMTg activity on the motivation to move rather than an
effect on general motor function, rats injected with AAV-oChIEF-
tdTomato, which had already been tested on the FST (Fig. 2),
were tested on the rotarod, a task requiring quick and coordinated
movements. After an initial training period, rats’ latencies to fall
were measured under a variety of conditions (slow or fast constant
speed and slow or fast ramping speed) (Fig. 6A). Under no con-
dition did LHb→RMTg stimulation have a significant effect on
rats’ latencies to fall [Fig. 6B; 20 rpm (rotations per minute): 180 ±
20 s without light vs. 150 ± 20 s with light, P > 0.05; 30 rpm: 60 ±
20 s without light vs. 50 ± 20 s with light, P > 0.05; ramp from 2 to
15 rpm: 18 ± 1 s without light vs. 17 ± 1 s with light, P > 0.05; ramp
from 2 to 30 rpm: 26 ± 2 s without light vs. 26 ± 2 s with light, P >
0.05]. Notably, these animals had shown specific deficits in the
FST. This indicates that LHb→RMTg stimulation does not have a
generalized effect on motor activity, but rather has an effect only
under specific conditions.
Lastly, we asked whether stimulation of the LHb→RMTg was

aversive, as would be expected for the experience of reduced
motivational states (52). In this test (the real-time place prefer-
ence test), rats are placed in a box with two compartments. After
an initial habituation period, rats receive optical stimulation (25
Hz) only when they were present in one compartment. Rats
expressing oChIEF actively avoided the compartment paired
with stimulation (Fig. 6C; preference score: 0.16 ± 0.03 without
light vs. −0.6 ± 0.1 with light, P < 0.001). Stimulation had no
significant effect on control rats expressing tdTomato (Fig. 6D;
preference score: 0.03 ± 0.04 without light vs. 0.08 ± 0.07 with
light, P > 0.05). These results indicate that overactivity of the
LHb→RMTg is aversive (Fig. 6C) (35).
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Fig. 4. Stimulation of LHb→RMTg reduces motivation to receive reward, but not
reward value. (A) Diagram of PR reinforcement schedule; see SI Experimental
Procedures. (B i–iii) Plots of BP (i), delay after rewards (ii), and inter–lever-press (LP)
intervals (iii) for mean of daily trials (i, Left), indicated conditions (i, Middle; ii; and
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dicates individual rats; red indicates mean ± SEM. (C) Plots of sucrose preference
(Left) and total liquid consumed (Right) for indicated conditions during SPT; see SI
Experimental Procedures. Same rats as used in Fig. 2. *P< 0.05, ***P< 0.001; paired
Student’s t test, unless otherwise indicated. ns, not significant; stim; stimulation.
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Discussion
Major depression is a leading cause of disability worldwide (1). It
encompasses a heterogeneous set of disorders with distinct fea-
tures (e.g., depressed mood, anhedonia, altered weight and/or
sleep, fatigue, guilt, etc.). Abnormalities in several brain regions,
such as the ventral tegmental area, the nucleus accumbens, and,
more recently, the LHb, have been linked to depression (2–4, 53).
A deficit in motivation is a central symptom of depression that

can impact behavior in aversive and rewarding environments (54,
55). This deficit could be the result of inflating the perceived
cost, or undervaluing the potential benefit, of avoiding punish-
ment or receiving a reward (24–26). In any of these cases, a
deficit in motivation suggests an abnormality in the functional
link between brain regions that evaluate reward-related events
and those that control motivated behavior. Anatomically, the

LHb is well suited to fill this role, as it receives afferents from
brain nuclei signaling reward-related events and provides signals
to monoaminergic centers known to control motivated behaviors
(27–31, 56–58). Functionally, the activity of LHb neurons is af-
fected by stimuli that contain motivational value; for example,
they are excited by stimuli that predict punishment or the ab-
sence of rewards (31, 56, 57). The LHb is thus well positioned,
both anatomically and functionally, to have an impact on moti-
vated behaviors based on expected outcomes. In light of these
findings and the proposed role of the LHb in depression, we
tested whether the projection from the LHb to the RMTg, an
important LHb output that inhibits dopaminergic centers, can
control motivation in aversive and appetitive contexts.
In an initial set of experiments, we examined whether the mo-

tivation to exert effort in an aversive environment is controlled by
the LHb→RMTg. We found that this pathway displays increased
activity coinciding with the animal’s entry into states of immobility
in the FST—states that are classically described as “behavioral
despair” and are a measure of reduced motivation in an aversive
and energetically demanding environment (29, 38, 42). Notably,
activity of this pathway did not correlate with fluctuations in
mobility that do not contain an immobility bout, suggesting that
this pathway does not simply control movement. Driving or
inhibiting this pathway increased or decreased, respectively, a rat’s
mobility, specifically by changing the frequency and duration of
inactive states, with no effect on its ability to move vigorously.
Combined, these data establish a causal relationship between ac-
tivity of the LHb→RMTg pathway and immobility, supporting the
view that this pathway controls the motivation to sustain effort in
an aversive context. Interestingly, stimulation of medial prefrontal
cortex (mPFC) axons terminating in the LHb also reduced mo-
bility in the FST (29). Our results suggest that mPFC→LHb inputs
may target LHb neurons that project to the RMTg.
We also tested whether the motivation to exert effort in a re-

warding environment is controlled by the LHb→RMTg. Given the
complexity of the brain circuitry known to encode reward and
aversion, where specific circuit components have been identified
for each (58), the motivation to exert effort in these different
contexts could be mediated by separate or overlapping mecha-
nisms. Here, we show that activation of the LHb→RMTg pathway
reduces the motivation to work for a reward in an appetitive op-
erant task, suggesting that at least some overlapping neural path-
ways control motivation in both aversive and appetitive contexts.
The effects observed in our behavioral tasks measuring the impact

of LHb→RMTg stimulation on motivation are unlikely to be caused
by a general reduction in mobility, as suggested by its effect in the
OF test. This conclusion is supported by several observations:
LHb→RMTg stimulation (i) produced no change in suprathreshold
mobility in the FST; (ii) did not affect the inter–lever-press interval
in the PR task; (iii) did not affect the total liquid consumed in the
SPT; (iv) had no effect in the rotarod test; and (v) drove, rather than
inhibited, movement in the real-time place preference test. Fur-
thermore, LHb→RMTg activity correlated with transitions into
immobility, but not generally with movement. Together, these
findings support the view that increasing LHb→RMTg activity does
not have a general effect on motor behavior, but rather controls
motivation to exert effort. The effects in the OF test are more likely
due to a reduced motivation to explore (50, 51). In this regard, it will
be interesting to compare the effects of LHb→RMTg stimulation on
an animal’s OF behavior in a familiar or novel environment.
Our results are consistent with pharmacological and dopamine-

depletion manipulations, which have been shown to reduce the
amount of effort made in challenging or energetically demanding
conditions, and to decrease spontaneous (non–goal-oriented)
locomotor function (e.g., OF) while leaving intact some motor
behaviors (24, 25, 50). Other studies examining inputs to, or out-
puts from, the LHb (27–30), are also consistent with LHb→RMTg
activity reducing motivation.
In summary, our data indicate that activity of neurons that

project from the LHb to the RMTg control the motivation to
perform behaviors requiring effort, irrespective of whether those
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behaviors are directed toward escaping an aversive condition or
toward acquiring a reward. Aberrant overactivity of this pathway,
previously examined in other contexts (35, 59), may be responsible
for some of the motivational deficits seen in depression.

Experimental Procedures
All procedures involving animals were approved by the Institutional Animal
Care and Use Committees of the University of California, San Diego. Detailed
methods describing stereotaxic injections of AAVs and optic fiber cannula

implantation, fiber photometry in vivo calcium imaging, behavioral assays,
and statistical methods are described in SI Experimental Procedures.
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