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Actions executed toward obtaining a reward are frequently associated with the probability of harm occurring during action
execution. Learning this probability allows for appropriate computation of future harm to guide action selection. Impaired
learning of this probability may be critical for the pathogenesis of anxiety or reckless and impulsive behavior. Here we
designed a task for punishment probability learning during reward-guided actions to begin to understand the neuronal basis
of this form of learning, and the biological or environmental variables that influence action selection after learning. Male and
female Long-Evans rats were trained in a seek-take behavioral paradigm where the seek action was associated with varying
probability of punishment. The take action remained safe and was followed by reward delivery. Learning was evident as sub-
jects selectively adapted seek action behavior as a function of punishment probability. Recording of neural activity in the
mPFC during learning revealed changes in phasic mPFC neuronal activity during risky-seek actions but not during the safe
take actions or reward delivery, revealing that this region is involved in learning of probabilistic punishment. After learning,
the variables that influenced behavior included reinforcer and punisher value, pretreatment with the anxiolytic diazepam,
and biological sex. In particular, females were more sensitive to probabilistic punishment than males. These data demonstrate
that flexible encoding of risky actions by mPFC is involved in probabilistic punishment learning and provide a novel behav-
ioral approach for studying the pathogenesis of anxiety and impulsivity with inclusion of sex as a biological variable.
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Significance Statement

Actions we choose to execute toward obtaining a reward are often associated with the probability of harm occurring.
Impaired learning of this probability may be critical for the pathogenesis of anxiety or reckless behavior and impulsivity. We
developed a behavioral model to assess this mode of learning. This procedure allowed us to determine biological and environ-
mental factors that influence the resistance of reward seeking to probabilistic punishment and to identify the mPFC as a
region that flexibly adapts its response to risky actions as contingencies are learned.

Introduction
Actions executed toward obtaining a desired outcome are often
associated with varying risk of harmful consequences. For exam-
ple, driving a car to go to a restaurant for dinner (reward) is asso-
ciated with the probability of getting into a car accident
(punishment). This probability increases if driving in a blizzard
and increases even further if the driver is drunk. In these

contexts, the desired outcome (or reward) is certain after the
successful execution of the action. What changes is the probabil-
ity that a punishment may occur during action execution.
Importantly, the punishment probability associated with an
action is often learned. In the above example, one is either
taught, or learns by experience, the hazards of driving in bad
weather or while drunk. After learning, computation of this
probability is fundamental to making the optimal decision to
execute, or to inhibit, reward-guided actions. Abnormalities in
this computation may lead to an exaggerated assessment of pun-
ishment risk, which is a hallmark of anxiety disorders, or to atte-
nuated calculation of this risk, which may be associated with
reckless behavior or impulsivity (Bechara et al., 2002; Hartley
and Phelps, 2012; Ersche et al., 2016; Vanderschuren et al., 2017;
Jean-Richard-Dit-Bressel et al., 2018).

We sought to design a model for punishment probability
learning during reward-guided actions with two aims in mind:
(1) to begin to understand the neuronal basis of this form of
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learning and (2) to characterize the biological and environmental
variables that influence the decision to execute, or to resist,
reward-directed actions after learning. We posited that neuronal
ensembles in the mPFC, a region extensively implicated in post-
learning risky decision-making (St Onge and Floresco, 2010;
Orsini et al., 2018) and punishment representation (Pascoli et al.,
2015), are dynamically involved in punishment probability learn-
ing. Our choice to focus on the mPFC was further supported by
a large literature implicating subregions of mPFC in fear condi-
tioning (Baeg et al., 2001; Corcoran and Quirk, 2007) or tasks
that assess the impact of punishment on rewarded action when
alternative reinforcing outcomes are possible (B. T. Chen et al.,
2013; Friedman et al., 2015; Orsini et al., 2018).

Guided by previous work (Azrin et al., 1963; Pelloux et al.,
2007; Simon et al., 2009; Park and Moghaddam, 2017a,b), we
designed a task for rats where actions taken toward obtaining the
same reward were associated with changes in the risk of punish-
ment. The focus on obtaining the same reward was critical
because choosing different rewarding outcomes is not always an
option in the real world and, in the case of addictive disorders,
may no longer be salient or viable (Volkow et al., 2003). The task
used a chained schedule of reinforcement where an initial “seek”
action preceded a “take” action, which then led to reward deliv-
ery. Seek and take actions were operationally similar, but punish-
ment (mild shock) probability was introduced, using an
ascending design, only contingent on the seek action. Learning
was quantified by changes in trial completion and seek action la-
tency as a function of punishment risk.

Using fiber photometry to measure real-time changes in neu-
ronal calcium activity, we find that learning is associated with
changes in the phasic response of mPFC neuronal activity during
the seek action but not during the take action, reward delivery,
or shock. After learning, the variables that influenced behavior
included reinforcer and punisher value, pretreatment with the
common anxiolytic diazepam, and sex. The influence of sex as a
biological variable was explored in detail to reveal critical similar-
ities and differences on how risk of punishment is integrated into
reward-guided actions.

Materials and Methods
Subjects
Adult Long-Evans rats, pair-housed on a reverse 12 h:12 h light/dark
cycle, were used. All experimental procedures were performed during
the rodents’ dark (active) cycle. Subjects were run in several cohorts with
equal representation of males and females in each cohort.

For task characterization, 28 adult rats (14 male, 14 female) were
obtained from Charles River at postnatal day 50–55. About a week after

arrival, they were handled and food restricted to 14 g/d. The food restric-
tion was monitored throughout the study to maintain their weight at
90% of free feeding weight, with the target weight increasing by 5 g/wk.
Training began at postnatal day 65–69, at which time males and females
on average weighted, 278 and 208 g, respectively. For fiber photometry
experiments, 8 adult rats (4 male, 4 female) bred in house were used
(male 330–380 g, female 230–242 g; older than postnatal day 86 at time
of recording). All experimental procedures were approved by the
Oregon Health and Science University Institutional Animal Use and
Care Committee and were conducted in accordance with National
Institutes of Health’s Guide for the care and use of laboratory animals.

Overview of experimental design
The probabilistic punishment task paradigm is depicted in Figure 1a, b.
For fiber photometry (n=2–4 per cohort) and task characterization
studies (n= 12–16 per cohort), separate cohorts with equal male-female
representation were used to ensure replicability of performance. All
cohorts were trained to learn the task similarly. After learning, two of
the cohorts used for task characterization were treated differently as fol-
lows: one cohort (n=16) was tested with shock intensity adjusted for
body weight (1mA/kg, 300ms); another cohort (n= 12) was tested in
the task after diazepam treatment followed by satiation, behavior-titrated
shock intensity, shock extinction, and progressive ratio (PR) after a
washout period (see below).

Surgery for fiber photometry
Viral infusion surgery. Before task training, subjects were injected

with a virus (AAV8-hSyn-GCaMP6s-P2A-tdTomato, Oregon Health
and Science University Vector Core, 5e13 ng/mL) to allow for pan-neuro-
nal expression of fluorescent calcium indicator GCaMP6s in the prelim-
bic mPFC as well as a non–calcium-dependent fluorophore tdTomato.
The coexpression of tdTomato allows for a motion artifact control signal
to be used to correct GCaMP signals in noisy environments with rodents
(Soares et al., 2016; Matias et al., 2017; Babayan et al., 2018; Menegas et
al., 2018). Rats were anesthetized with isoflurane and placed in a stereo-
taxic apparatus. Following an incision and topical application of lido-
caine, craniotomy was performed to lower a 10mL syringe (Hamilton)
for virus infusion into the mPFC. Two injections were made (325 nL/site
at 50 nL/min) at the coordinates AP 12.7, 6ML 0.65, DV �2.5 and
�3.5 mm (from dura) with the most ventral injection always performed
first. A microcontroller (World Precision Instruments) was used for the
injections. Virus was allowed to diffuse for 5min after the most ventral
injection. The needle was slowly raised, and the second injection was
performed and allowed 12min to diffuse. After this, the needle was
removed, the incision was stapled, and animals were given a 5mg/kg
injection of carpofen subcutaneously.

Fiber implant surgery. After allowing at least 6weeks for virus
expression and stabilization, subjects were implanted with an optical
fiber (400mm core) aimed at the prelimbic region of the mPFC (AP
12.7,6ML0.65, DV�3.3 mm from dura) using the surgical procedures
outlined above, with the exception that three additional bore holes were
made for three skull screws, which surrounded the craniotomy of the

Figure 1. Outline and characterization of learning in the probabilistic punishment task. a, Schematic of a given trial. b, Structure of a given session. c, Evidence of learning demonstrated by
behavioral changes in Session 1 compared with Sessions 4–11.
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mPFC. The optical fiber was slowly lowered and was glued to the skull
with light-curing epoxy (Tetric N-flow, Ivoclar Vivadent). Subjects were
given 5mg/kg of carpofen and allowed about a week to recover with ad
libidum access to food before behavioral testing and habituation to re-
cording patchord began.

Apparatus
Operant chambers (Coulbourn Instruments) were used for behavioral
testing. They included two nose poke holes, which could be illuminated,
on one wall located 2 cm above a grid floor. The grid floor was connected
to a shock generator. The food trough was on the opposite wall and was
used to dispense 45mg sucrose pellets (Bio-Serv) and detect food trough
entries. Chambers contained infrared activity monitors (Coulbourne
Instruments) located on the roof of the chamber. Graphic State software
(version 3.03 and 4, Coulbourn Instruments) running on a windows PC
was used for programming the task. For fiber photometry experiments,
the operant chamber had an opening in the top of the box to permit
entry for the recording patchcord.

Chain schedule training
After 1 d of habituation to the operant box and food trough (60min, pel-
let dispensed every 45 s on average), subjects began chained schedule
training. Subjects were first trained to respond on the “take” nose poke
under a fixed ratio 1 (FR1) for 45mg sucrose pellets. Daily sessions
lasted until 90 pellets were delivered or 90min elapsed. This phase of
training lasted 6 d. Subjects were then trained to respond on the “seek”
nose poke. A response on the seek nose poke (first link of the chain)
resulted in extinguishing of the seek nose poke light concurrent with a
750ms delay. The take nose poke was illuminated next, Completion of a
FR1 on the take nose poke (second link of the chain) resulted in extin-
guishing the take nose poke light and food delivery and food trough illu-
mination. Subjects were required to retrieve the pellet to initiate the 10 s
intertrial interval (ITI). After the ITI, the seek nose poke was illuminated
and a new trial began. Responding during the ITI was recorded but had
no scheduled consequences. The side of seek and take nose pokes were
counterbalanced across subjects. After the completion of 90 trials or
90min, the session was terminated. All subjects were given 4 d of train-
ing and were moved to no-shock baseline procedures.

No-shock baseline procedures
This procedure began after subjects reliably learned the chained rein-
forcement schedule. The schedule of reinforcement was identical to that
in previous training with the exception that the 90 trials were broken
into six 15 trial blocks that were 15min in length. Each block began by a
3min time-out period, where all lights were extinguished, followed by a
12min response period where subjects could earn up to 15 pellets. The
nose poke light remained on until the subject made a response on the
illuminated nose poke or until the end of the 12min response period. If
the 12min response period ended before completion of the 15 possible
trials, then lights were extinguished, and the subject moved to the next
block. If subjects completed 15 trials before the 12min response period
elapsed, all lights were extinguished and responding produced no pro-
grammed consequences for the duration of the 12min response period.
Thus, these sessions served as a control to verify that subjects learned
and could complete the sequential actions in a blockwise manner with-
out punishment. These control sessions are hereafter referred to as “no-
shock” sessions. After subjects performed this procedure for 4 d, they
began the probabilistic punishment task.

Probabilistic punishment task procedures
After no-shock baseline procedures, footshock contingencies were intro-
duced for the probabilistic punishment task. The reinforcement schedule
was identical to that used in the no-shock baseline procedure, but now
each block was accompanied by an increase in probability of a mild foot-
shock (0.25mA, 300 ms) immediately after the seek action. As was the
case in no-shock procedures, subjects could complete up to 15 trials in a
block. A trial ended on reward retrieval after completion of the seek and
take action sequence or after the 12min response period elapsed in the

absence of action execution. To prevent generalization of the shock to
other blocks, the risk of the seek action contingent footshock increased
with each successive block in the same ascending order for each session
(0%, 6%, 10%, 18%, 30%, 60%). To assess learning of probabilistic pun-
ishment, we performed the task for 12 consecutive sessions. When two-
way ANOVA of trial completion in the last five consecutive sessions in
either sex revealed no main effect of session or interaction as described
by (Simon et al., 2009) the performance was considered stable.

The behavioral procedure was optimized for fiber photometry. We
increased the delay between the seek action and take cue illumination to
1.5 s to account for the relatively slow offset of GCaMP6s activity (Decay
Time t1/2 = 1 s for 1 action potential; T.W. Chen et al., 2013), added a 1 s
delay between the take action and reward delivery, changed the ITI to
15 s to increase the number of samples when normalizing the control
signal, and decreased the task to four blocks (0%–18% risk of shock,
increasing in quarter log units) to allow for 20 trials per block rather
than 15. Along with decreasing the number of blocks, we reduced the
inter-block intervals to 2 min to shorten the task to 56 min. This short-
ened task length was done to mitigate photobleaching of the fluoro-
phores from continuous light exposure. Behavior was considered stable
after a minimum of 4 sessions and when individual trial completion was
within 25% of a 3 d mean for 3-consecutive sessions.

Fiber photometry systems and recording procedures
Two commercially available fiber photometry systems, Neurophoto-
metrics Model: FP3001 and Tucker-Davis Technologies RZ5 were used.
For Neurophotometrics, recording (n=2) was accomplished by provid-
ing both 470nm and 560nm excitation light through the 400 mm core
patchcord to the mPFC for GCaMP6 and tdTomato signals, respectively.
LEDs were reflected through a dichroic mirror and onto a 20� Olympus
objective. Excitation power was measured at 240–260 mW at the tip of
the patch cord. Emission at 510–530 and 630–660nm, from 470 and
560nm excitation light, respectively, was split with an image splitting fil-
ter and captured via a high quantum efficiency CMOS Pointgrey camera.
Recordings were performed using bonsai open source software (Lopes et
al., 2015) and recorded at 41Hz.

For Tucker-Davis Technologies recording (n=5), excitation light
was emitted from a 465 and 560nm LED (Doric Instruments), sinusoi-
dally modulated at 220 and 310-Hz, respectively, and controlled through
an LED driver interfacing with the Tucker-Davis Technologies RZ5
processor running Synapse software. Excitation light was passed through
a 400mm core patchcord connected to a dual-fluorescence mini-cube
(Doric Instruments). Light intensity at the tip of the patchcord was
started at 10 mW but adjusted on an individual basis to optimize compa-
rable levels of GCaMP and tdTomato signal and prevent photodetector
clipping. This resulted in a range of 1–10 mW for light intensity for these
subjects. GCaMP and tdTomato emission (500-540nm and 580-680 nm,
respectively) were collected back through the patchcord to dichroic mir-
rors and bandpass filters within the Doric minicube. Fluorescence was
converted to voltage through two femtowatt detectors (Newport 2151).
Synapse software demodulated fluorescence signals in real time at 1 kHz
with a 6 Hz low pass filter.

For both systems, time stamps of behavioral events were collected by
5 V TTL pulses that were read into an Arduino interfaced with bonsai
software or the same RZ5 processor in the Neurophotometrics and
Tucker-Davis Technologies systems, respectively, to allow for aligning
calcium activity with specific behavioral events in the task. Following be-
havioral training, but before shock contingency exposure, subjects were
well acclimated to connection of the recording patchcord to assure
changes in behavior were not due to distraction from the recording
setup. The recording fiber was prebleached once over 12 h and for
30min before recording sessions (constant illumination of both LEDs at
;300 mW power). To prevent slippage of patchcord connector from the
implant, the THOR ADAL3 connector was used instead of a standard
ceramic ferrule. Subjects were connected to a dummy fiber for nonre-
cording days, on control no-shock and probabilistic punishment task
sessions, which mirrored the recording fiber but did not emit any light.
Recording was performed at 2 or 3 time points: in the third no-shock
session before probabilistic punishment (n=5), at the first probabilistic
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punishment session when subjects first experience the footshock contin-
gencies (Session 1; n= 7), and after behavior had stabilized, i.e., the task
was learned (Sessions 5–8; n=7).

Body weight and behavior-titrated shock
Subjects in one cohort (n=16) were required to achieve stable perform-
ance (as indicated above) using a footshock, which was titrated based on
body weight (1.0mA/kg, 300 ms) (Cooper et al., 2014; Orsini et al.,
2016). In another cohort (n= 12), shock intensity was later titrated for
each subject until animals showed comparable levels of action suppres-
sion of ;50% trial completion for the session (behavior-titrated shock).
This was done by increasing or decreasing the shock intensity by
;0.05mA until stable behavior was acquired (three consecutive sessions
within 25% of the session mean). This procedure allowed for compari-
sons of how punishment probability affects reward seeking when the
shock intensity produced action suppression in all subjects.

Diazepam testing
Injectable diazepam (Pfizer/Hospira) at a concentration of 5mg/mL was
assessed. Sterile saline (0.9% NaCl) was used for control injections.
Diazepam (1.0 and 2.0mg/kg) or saline was administered intraperitone-
ally 10min before operant sessions with all injections given at a volume
of �0.5 mL/kg. Doses of the same drug were separated by at least 1 d
contingent on subjects performing within 25% of baseline (prediazepam)
levels or after reestablishment of stable behavior (mean overall trials
completed for three consecutive sessions within 25%).

Satiety testing
Subjects had 22 h of unlimited access to standard laboratory chow before
a probabilistic punishment task session.

Shock threshold testing
Procedures were performed similar to previously published methods
(Söderpalm and Engel, 1988). Subjects were placed in the chamber under
red light for 15min with no scheduled consequences on day 1. On day 2,
after 3min of acclimation to the operant chamber, a footshock was
applied about every 40 s (contingent on all four paws being on the shock
grid). An ascending intensity (0, 0.05, 0.06, 0.08, 0.1, 0.13, 0.16, 0.2,
0.3mA) was used until the subject responded to the stimulus with a
flinch, defined as a sudden rearward jerk immediately after shock
administration.

Extinction of shock-suppressed behavior
Animals were tested for three sessions on probabilistic punishment task
behavior using the behavior-titrated shock intensities to ensure that
behavior remained stable. They were then tested in extinction sessions
where no footshock punishment was administered during the task.

Progressive Ratio behavior
PR was assessed after extinction of shock-suppressed behavior in accord-
ance to previously published methods (Richardson and Roberts, 1996).
Briefly, completion of a fixed ratio on what was previously the take nose
poke resulted in a food pellet. The fixed ratio increased according to the
following algorithm, response ratio = [(5 � e0.2n)�5], where n is the
number of reinforcers earned for a given session. PR sessions ran for 5 h
or until 45min elapsed without the completion of a ratio. The last com-
pleted ratio was considered the subjects’ breakpoint. PR sessions were
run for 6 d, and all subjects reached a stability criterion of two consecu-
tive sessions with a breakpoint within two step sizes.

Open field testing
In Cohort 1, animals were tested on the open field 3 d after food restric-
tion but before any operant training. The open field consisted of a gray
box (36 inch � 36 inch) with gray walls (16 inch height). Subjects were
placed in the center of the open field and allowed 10min to explore the
field. Zone entries as well as total distance traveled was monitored by
camera and analyzed using Smart software (version 3.0, Harvard
Apparatus). Dependent measures were percent time in the inner region,
percent time in the outer region, and locomotor activity (total distance
traveled).

Task characterization data and statistical analysis
We assessed both no-shock and probabilistic punishment task sessions.
Trial completion was measured as the percentage of completed trials (of
the 15 possible) for each block, whereas action latencies were defined as
time from nose poke cue onset to action execution. Group mean values
for each risk block or comparing risk and no-risk blocks are presented as
mean6 SEM in all figures. In addition to assessing trial completion over
each punishment risk, we analyzed overall trial completion to determine
whether subgroups emerged that were differentially sensitive to punish-
ment based on an 80%/30% trial completion split where .80% comple-
tion was resistant, 30%–80% completion was moderate, and ,30%
completion was sensitive to punishment (Gabriel et al., 2019). For action
latency measures, data were only included in analyses if the subjects
completed two or more trials for a given block. Because the lack of some
latency data from subjects not completing any trials complicates the abil-
ity to perform repeated-measures ANOVA, latency behavior in risk
associated trials was collapsed across the five blocks with risk of shock
(6%–60%) to yield values for behavioral indices of action latency changes
when punishment risk was present versus the no risk (0% risk) block.

Statistical procedures used either an ANOVA or mixed-effects
model. Three-way ANOVA was used with factors of risk blocks, sex, and
session type and followed up with two-way or one-way ANOVA where
appropriate. Because of smaller sample sizes in pharmacological, extinc-
tion, titration, and satiety procedures, we assessed these manipulations
with two-way ANOVA using factors of risk block and manipulation or
treatment. Tests were done with the Greenhouse-Geisser correction for
sphericity violation where appropriate. Activity counts during the ITI
and during the shock period (i.e., the 300 ms period during which the
shock was administered) were also quantified, and activity during blocks
was collapsed and compared using two-tailed t tests. Post hoc compari-
sons were performed using the Bonferroni correction. An a level of 0.05
was used for all tests. Behavior data files were processed using custom-
written scripts in Python (versions 2.7 and 3.0), and all statistical analy-
ses were performed in GraphPad Prism (version 8) or R (version 3.6.1,
ez package).

Behavioral modeling. Behavioral modeling of punishment probabil-
ity dependent changes in trial completion was performed by fitting a sig-
moid using a four-parameter logistic regression equation (4PLR) with
the least-squares method to the three stability days when shock was
titrated for behavioral output. The 4PLR used the following equation:

Y= d1 (a – d)/(11 10a((c – X)� b))

Where Y is the percent of trials completed, X is the log risk of shock,
a is the top of the asymptote, constrained to be less than or equal to 100,
d is the bottom asymptote, c is the X value associated with a 50%
decrease in behavior, and b is the measurement of steepness of the curve.
To assess the integration of increasing probabilistic punishment, we
quantified the slope of the linear portion of the sigmoid between high
and low action by fitting a linear trendline to the bend points of the sig-
moid. Briefly, we used the estimates for the top and bottom asymptote
(a and d, respectively) and applied the following formula:

Upper = (a – d)/(11 k)1 d

Lower = (a – d)/(11 1/k)1 d

Where k is a constant equal to 4.6805 (Sebaugh and McCray, 2003).
A linear trendline was then fit to the upper and lower values to yield a
slope for the linear portion of the sigmoid. Modeling was performed in
GraphPad Prism (version 8).

Fiber photometry data analysis
Signals from the 465 (GCaMP6) and 560 (tdTomato) streams were proc-
essed in Python (version 3) using custom-written scripts; 465 and 560
streams were broken up based on the start and end of a given trial (for a
given trial n: start of the ITI of trialn-1 to end of the ITI of trialn). This
was done to fit the control 560 signal to the 465 signal on a trial � trial
basis using a least-squares linear fit (numpy polyfit function in Python),
as fitting the control signal to the entire session recording can be difficult
when high amounts of motion are present, as in the current task or if
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bleaching rates are different between fluorophores (Soares et al., 2016;
Matias et al., 2017). The fitted 560 signal was then subtracted from the
corresponding 465 signal to yield the change in fluorescent activity
(DF/F = 465 signal – fitted 560 signal/fitted 560 signal) that is corrected
for non–calcium-dependent motion artifact and photobleaching from
extended light exposure.

To assess whether changes in calcium activity were present after be-
havioral action execution (seek action and take action) and to normalize
activity changes based on basal fluorescence, perievent z scores were
computed by comparing the DF/F after the behavioral action to the 1.5 s
baseline DF/F before execution. For example, the changes in DF/F fol-
lowing the seek action were compared with mean of the DF/F 1.5–0.02 s
before the seek action. Because data from Neurophotometrics were
sampled at 41Hz, we downsampled the Tucker-Davis Techno-
logies signals to 41Hz as well for graphical purposes using Fourier
method (scipy library in Python). We further separated punished (i.e.,
shock) trials from unpunished trials, to investigate differential activity
that was seen during punishment administration and during anticipa-
tion of, but no actual administration of, punishment. To quantify posi-
tive or negative changes in calcium activity following action execution,
we performed net area under the curve (AUC) analysis (trapezoidal
method) for 1 s after the seek action or take action and for the 2 s after
reward delivery. These values were analyzed using mixed-effects model
with factors session and risk block. Post hoc Bonferroni corrections were
used when comparing sessions with other sessions or comparing with
the 0% risk block. To investigate individual differences, we performed
correlational analyses between behavioral and mPFC activity changes
before and after learning (i.e., between Session 1 and Session 5–8). To
account for sex differences in behavior, we normalized behavior changes
by taking the change in trial completion (TrialsSession 5–8 – TrialsSession1)
and z-scoring it for each sex. Thus, more negative values reflect subjects
who showed greater decreases in resistance to probabilistic punishment.
For mPFC activity, we took the difference between risk block z-score
AUCs for seek actions in the corresponding sessions (AUCSession 5–8 –
AUCSession1). After verifying no violations in normality with the
Shapiro-Wilk test, we performed two-tailed Pearson correlations for
punished and unpunished trials. All statistical tests were performed with
an a level of 0.05 in GraphPad Prism (version 8).

Histology and imaging
Viral expression and fiber placements were verified after behavioral test-
ing. Subjects were anesthetized with chloral hydrate (400 mg/kg) and
transcardially perfused with 0.01 M PBS followed by 4% PFA. Brains
were removed and postfixated in PFA for 36 h before being placed in
20% sucrose solution and stored at 4°C. Forty-micron brain slices were
collected on a cryostat (Leica Microsystems) and preserved in 0.05%
phosphate-buffered azide. Brain slices were mounted to slides and cover-
slipped with Vectashield antifade mounting medium. An Apotome.2
microscope (Carl Zeiss) was used to image brain slices for GFP (Carl
Zeiss Filter set 38: 470 nM excitation/525 nM emission) and tdTomato
(Carl Zeiss Filter Set 43: 545 nM excitation/605 nM emission) to validate
expression of both fluorophores in cells near the fiber tip. Fiber place-
ment and extend of viral expression was verified according to Paxinos
andWatson (1998).

Excluded data
Behavioral data from 4 individual subjects’ sessions were excluded due
to feeder malfunctions. Fiber photometry data from 1 male were
excluded from fiber photometry experiments due to injection of a differ-
ing GCaMP6-expressing viral construct from the other subjects, compli-
cating his comparison with other subjects. This subject was included for
behavioral analysis. Trials where the optical fiber patch cord fell off dur-
ing action periods and needed to be reconnected were also excluded.

Results
Learning of probabilistic punishment task
Guided by other tasks (Pelloux et al., 2015; Park and
Moghaddam, 2017a), our task used a chained schedule of

reinforcement involving two sequential actions. Rats first exe-
cuted a “seek” instrumental action in one nose poke followed by
a “take” instrumental action in a second nose poke, which then
led to reward delivery (Fig. 1a). The “seek” action was punished
by delivering of a mild footshock after rats completed the action.
The probability of the “seek” action being punished escalated in
a blockwise manner throughout a single session (Fig. 1b).

Rats first learned to perform the sequential actions without
punishment, which are designated as no-shock sessions, for at
least four sessions. To validate task learning and to further mir-
ror other procedures assessing risky choice, we determined stable
probabilistic punishment task behavior after introduction of
footshock punishment by identifying when five consecutive ses-
sions produced no significant effect of session nor session � risk
interaction in a two-way ANOVA for each cohort (Simon et al.,
2009). These methods determined that stable behavior was
observed in Sessions 4–11 (range for all cohorts; main effect of
session or session� risk block interaction: F values, 1.97, p val-
ues. 0.13). After assessing the first 11 probabilistic punishment
task sessions, we noted that task behavior differed in Session 1,
when animals were first learning of the shock contingency, com-
pared with Sessions 4–11. In Session 1, therewas anoverall resist-
ance to probabilistic punishment in the 6%-18% risk blocks that
decreased after subjects learned the task in Sessions 4–11 (session
� risk block interaction: F(3.07,83.05) = 18.04, p, 0.01; post hoc p
values, 0.021; Fig. 1c).

Characterization of probabilistic punishment task after
learning
Collapsed data for the last two no-shock sessions and the proba-
bilistic punishment task sessions when performance under shock
risk was stable as determined by ANOVA are shown in Figure
2a–e. As noted earlier, trial completion decreased as a function
of punishment probability (risk block � session type interaction:
F(2.3,60.04) = 32.27, p, 0.0001), with significant decreases for all
risk blocks in probabilistic punishment (i.e., shock) sessions
compared with the corresponding block in the no-shock sessions
(post hoc p values, 0.029). Inspection of these data at the indi-
vidual level revealed considerable between-subject variability in
punishment resistance, with subjects showing anywhere from
complete punishment resistance to little. Dividing subjects based
on trial completion into punishment-resistant (.80% trial com-
pletion), moderate (30%–80% trial completion), and sensitive
(,30% trial completion) subgroups resulted in 15 of 28 resistant,
8 of 28 moderate, and 5 of 28 sensitive subjects (Fig. 2a, right).

The suppressive effects of probabilistic punishment were
observed during the latency to complete the “seek” action, that
is, the risky action (risk � session type interaction: F(1,26) = 27.9,
p, 0.001, Fig. 2b). Increased seek action latency was observed in
the risk blocks of probabilistic punishment sessions compared
with the corresponding blocks in no-shock sessions (Fig. 2b,
right; post hoc p, 0.001). Overgeneralization of shock risk to the
0% risk block (i.e., first block) was not observed (post hoc
p= 0.99 vs no-shock). Of note, variability increased at higher risk
blocks because fewer subjects completed more than one trial (21
of 28 subjects). Subjects also demonstrated anticipation of foot-
shock as the latency to complete the first “seek” action of a block
increased with punishment risk compared with no-shock ses-
sions (risk � session type interaction: F(1,26) = 29.08, p, 0.001;
Fig. 2c) and was also specific to blocks with a risk of shock (post
hoc p, 0.01). Seek actions were followed by a small (,1 s) but
significant increase in latency to complete the take action in
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probabilistic punishment sessions (risk � session type interac-
tion: F(1,26) = 9.45, p=0.005, Fig. 2d). Because in some trials, the
take action is operationally preceded by footshock, we further
investigated whether the increase in take action latency is related
to receiving a footshock. A one-way ANOVA was used to com-
pare take action latency for take actions preceded by footshock
(punished) and no footstock (unpunished) in punishment risk
sessions with take actions from the corresponding blocks (i.e.,
blocks 2-6) in no-shock sessions. This analysis revealed that take
action latency increases seen in probabilistic punishment ses-
sions were related to receiving the footshock punishment (main
effect of trial type: F(1.07,29.1) = 17.3, p, 0.01). Take action latency
in punished trials was increased compared with the no-shock
sessions and the unpunished trials of punished sessions (post hoc
p values� 0.001), whereas unpunished trial latencies were com-
parable with that of the no-shock sessions (post hoc p= 0.99, Fig.
2d, right).

Reward retrieval latency was not influenced by risk of shock
(risk � session type interaction: F(1,26) = 0.31, p= 0.58; Fig. 2e)
but modestly increased in later blocks compared with earlier
blocks regardless of whether shock risk was present (main effect
of block: F(1,26) = 27.6, p, 0.001). This suggests a lack of over-
generalization of punishment to the context.

In one cohort, we also assessed innate anxiety in the open
field before task training to assess whether individual patterns ex-
ploratory behavior would be associated with learned punish-
ment-related behavior in the probabilistic punishment task
(n=16; Table 1). Individual variability in punishment resistance
was not associated with exploratory behavior in the inner or
outer zones of the open field or overall locomotor activity.
Similarly, increases in seek latency during risk blocks were not
associated with increased time spent in the inner or outer zones
of the open field, nor with activity as assessed through locomotor
activity.

PFC activity represents learning of probabilistic punishment
The mPFC is implicated in risky choice, the representation of
aversive stimuli, and action inhibition (B. T. Chen et al., 2013;
Friedman et al., 2015; Pascoli et al., 2015; Orsini et al., 2018;
Verharen et al., 2019). Importantly, neurons in mPFC are sensi-
tive to punishment risk as well as to the experience of a stressor
or punisher (for review, see McEwen and Morrison, 2013; Park
and Moghaddam, 2017b). Little is known, however, if the mPFC
flexibly encodes probabilistic punishment during learning. Thus,
we hypothesized that, in our task, the mPFC processes risky
action differently when probabilistic punishment is a factor. We
used fiber photometry to record mPFC calcium activity in rats
performing an optimized version of the probabilistic punishment
task (see Materials and Methods; Fig. 3a), which focused on the
risk blocks that were different between Session 1 and after learn-
ing (Fig. 1c). Fiber photometry, compared with spike recording,
provided the advantage of being able to record the mPFC
response during footshock (i.e., punished trials).

Viral expression was apparent in the mPFC and fiber place-
ments were located within the prelimbic region (Fig. 3b). Fiber
placement in 1 subject was on the borderline of the prelimbic/
infralimbic region. Inspection of the data, however, revealed that
the patterns of activity for this subject were similar to the rest of
the group (data not shown). Using an individualized method of

Figure 2. Assessing the effects of probabilistic punishment on task behaviors after learning. a, The number of trials completed in each block decreased on average in the probabilistic punish-
ment task sessions where shock risk was present (S, blue) but not in no-shock sessions (NS, white). Subgroups with differing levels of punishment resistance emerged. Blue area represents pun-
ishment-resistant. Gray area represents moderate. Red area represents punishment-sensitive (right). b, c, Increasing risk of shock was also associated with an increase in latency to complete
the risky “seek” action during and at the start of risk blocks. d, The take response modestly but significantly increased with risk of shock in punished trials. e, Latency to retrieve the food reward
was not affected by shock risk. NS, No-shock; S, shock. *p, 0.05 versus no-shock. n= 28 for trials completed and for mean risk block latencies. Gray symbols represent individual data points.

Table 1. Pearson correlation (r) values of open field behavior with probabilistic
punishment task measuresa

Trial completion Seek latency Take latency Reward retrieval

OF inner –0.17 0.18 –0.06 –0.21
OF outer 0.03 –0.09 0.01 0.24
OF activity –0.49 0.39 0.32 0.38

OF, Open field. All p values. 0.06 uncorrected.
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determine task learning (see Materials and Methods), we found
that performance was stable by Session 5–8. After learning,
punishment resistance decreased in Session 5–8 compared
with Session 1 (Fig. 3c, main effect of session: F(1,7) = 5.95,
p=0.04), mirroring the behavior seen in the full version of the
probabilistic punishment task at the corresponding 0%–18%
risk blocks (Fig. 1c). Increasing shock risk resulted in decreases
in trial completion (main effect of risk block: F(1.2,8.8) = 9.42,
p=0.01; post hoc p=0.002 at 18% risk). While no risk block �
session interaction was present (F(1.2,8.44) = 1.614, p= 0.24), it
is apparent that the differences between Session 1 and Session
5–8 were driven by the 6%-18% risk blocks as all subjects
completed 100% of the trials when risk was 0% for Session 1
and 5–8.

After z-scoring calcium activity based on behavioral action,
we noticed robust elevations in the mPFC following shock
administration (Fig. 3d,e). This led us to divide trials into pun-
ished and unpunished trials focused around the seek action (i.e.,
the action with a risk of shock). Unpunished seek actions
revealed a different response depending on session (main effect
of session: F(1.56,9.4) = 5.9, p= 0.026). We observed a decrease in
activity during seek action execution in Session 1 that was similar

to those observed in the no-shock session (post hoc p= 0.40, Fig.
4a,b). After learning (Session 5–8), the magnitude of decrease
during seek action execution was attenuated (post hoc p, 0.01 vs
no-shock, p, 0.01 vs session 1; Fig. 4c, right). Near-significant
changes in calcium activity with increasing blocks were also
observed (main effect of risk block: F(1.58,9.5) = 3.7, p= 0.069).

In contrast to the decrease in mPFC activity during seek
action execution when animals did not receive shock, the same
action executed when shock was received produced a large
increase in mPFC activity (main effect of risk block [footshock]:
F(1.52,9.1) = 6.5, p=0.02). This increase was not different before or
after task learning (paired t test: t(6) = 0.89, p=0.40; Fig. 4d).

Analysis of individual differences in behavioral and neural ac-
tivity changes before and after task learning (i.e., Session 1 and
Session 5–8) revealed a significant negative correlation (Pearson’s
r = –0.79, p=0.03, two-tailed) between the magnitude of decrease
in punishment resistance (behavioral change) with increases in the
seek action mPFC activity state for risky, unpunished trials (Fig. 4e,
left). While individual differences in mPFC responsivity change to
punishment were observed, these differences were not associated
with behavioral changes (Pearson’s r = –0.12, p=0.80, two-tailed;
Fig. 4e, right).

Figure 3. Recording neuronal calcium activity with GCaMP6 in mPFC during the probabilistic punishment task. a, Subjects performing a modified version of the probabilistic punishment
task while neuronal calcium activity in the mPFC was recorded via GCaMP6s. b, GCaMP6s (green) and tdTomato (red) were readily expressed in the mPFC, with optical fibers (gray dots) target-
ing the prelimbic region of the mPFC. Scale bar, 500mm. c, More trials were completed before learning (Session 1, black) compared with after learning (Session 5–8, red). d, A representative
raw trace depicting GCaMP6s and tdTomato signals. e, Representative z-score calculations surrounding the seek action. Each row is a trial with time 0 being the seek action time. Green S indi-
cates punished (i.e., shocked) trials. *p, 0.05. n= 8.
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Finally, we examined whether learning-related changes in
mPFC calcium activity during seek action generalize to execution
of safe actions or to reward delivery. The advantage of the seek-
take task structure is that the take response has the same
mechanics but carries no punishment risk. Unlike seek trials,
mPFC activity in unpunished trials did not change in Session 1
compared with Session 5–8 during take action or reward delivery
(effect of session or risk or interaction: unpunished take action F
values, 1, p values. 0.48; reward unpunished F values, 1.2, p
values. 0.33; Fig. 5a–c). In punished trials, the take response
appeared to show a more robust decrease in calcium activity
than in unpunished trials. However, this result was not signifi-
cant (effect of risk block: F(1,6) = 4.7, p= 0.073) and should be
interpreted with caution as it may be confounded by the large
multisecond increases in calcium activity seen from footshock
administration (Fig. 5d, top). Nevertheless, significant effects of
session (i.e., learning) were not observed for the take action

(paired t test: t(6) = 1.2, p=0.26) nor the reward retrieval (paired
t test: t(6) = 1.5, p=0.17; Fig. 5d, bottom) in punished trials.

Behavioral and pharmacological manipulations of
probabilistic punishment task behavior
Value of reward or punishment may change even after action-
punishment contingencies are learned. Thus, animals must
appropriately adapt their behavior to such changes. To assess
whether the current task is sensitive to shifting reward or punish-
ment contingencies, we did three additional behavioral experi-
ments to manipulate reinforcement and punishment values after
task learning.

To decrease the reinforcing value of the food reward, subjects
were given 22 h of ad libitum access to standard chow in the
home cage before the task. This manipulation decreased punish-
ment resistance when there was 30%–60% risk of shock (risk

Figure 4. Changes in mPFC neural calcium activity following seek action execution before and after probabilistic punishment task learning. a–c, Seek actions that were unpunished resulted
in decreases in calcium activity at the time of action execution both before introduction of probabilistic punishment (no-shock, gray) and in the Session 1 (black) before probabilistic punishment
was learned. These decreases were attenuated following stabilization (learning) of the probabilistic punishment task in Session 5–8 (red). d, Footshock (red bar) after a seek action produced ro-
bust increases in calcium activity in the mPFC in Session 1 and Session 5–8 that were significantly greater than the 0% risk block. Bottom, mPFC responses to punishment did not change after
learning of the probabilistic punishment task. e, Individual differences in performance between Session 5–8 and Session 1 revealed that greater decreases in punishment resistance (shaded
black arrow) were associated with greater increases in mPFC activity after risky, unpunished seek actions, but not after punished seek actions. Black line indicates the linear trendline for the
data. *p, 0.05, Session 5–8 versus Session 1 or no-shock. #p, 0.05 versus 0% risk of shock. n= 5–7. ns = not significant. Gray circles represent individual data points.
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block � satiety interaction: F(2.9,32.4) = 3.02, p=0.045; post hoc p
values, 0.046; Fig. 6a) but not during the 0%-18% risk blocks
(post hoc p values. 0.24). Satiation also increased latency to
complete the seek action (risk � satiety interaction: F(1,10) =
24.04, p, 0.01; Fig. 6b), an effect seen more profoundly in risk
blocks (post hoc p, 0.01) but also in the 0% risk block (post hoc
p=0.045).

To assess whether the task was sensitive to the value of pun-
ishment, and to help produce comparable behavioral levels
across subjects, we adjusted the shock intensity until levels of
action suppression were similar between subjects. Stable behav-
ior was acquired after 3–12 d of adjustment of shock intensity in
;0.05mA increments. Subjects reliably responded to manipula-
tion in the intensity of punishment, which overall decreased pun-
ishment resistance (titration � risk block interaction: F(2.2,24.4) =
22.8, p, 0.001; Fig. 6c). Post hoc analyses revealed that, overall,
task completion decreased after shock adjustment in 30%-60%
risk blocks (p, 0.01). Seek response latency during risk blocks
also increased after titration of shock intensity (titration � risk
interaction: F(1,11) = 32.2, p, 0.01; Fig. 6d), but no effect of titra-
tion was observed on seek latency in the 0% risk block (post hoc
p=0.21).

To assess whether subjects could flexibly adapt to the omis-
sion of punishment, they underwent extinction sessions in which
the probabilistic footshock was no longer presented after the
seek action. Extinction of shock risk increased task completion
in risk blocks (extinction day� risk block interaction: F(3.1,33.6) =
24.95, p, 0.001; Fig. 6e). This was apparent for blocks with pre-
vious shock risk of �10% for the first and second extinction ses-
sions. Increases in trial completion were observed in the second
extinction day compared with the first extinction day (main
effect of session: F(1.47,16.1) = 134.5, p values. 0.005). Extinction
of probabilistic punishment also resulted in decreases in seek

latency (extinction day � risk block interaction: F(1.5,16.4) =
15.46, p, 0.001; Fig. 6f). As early as the first extinction sessions,
seek latency in risk blocks decreased nonsignificantly from 66 to
26 s (post hoc p= 0.078 vs shock). However, a continued signifi-
cant decrease in seek latency to 4 s was observed in Extinction 2
(post hoc p. 0.001, Extinction 2 vs shock). No changes were
seen in the 0% risk block for seek latency between the shock risk
sessions and either of the extinction sessions (all p values .
0.11).

Finally, we asked whether the behavioral responses to proba-
bilistic punishment have relevance to anxiety states by testing the
impact of the anxiolytic drug and GABAa receptor-positive allo-
steric modulator diazepam (1 and 2mg/kg) on the probabilistic
punishment task. These low doses of diazepam were chosen so
that motor behavior would not be impacted to the degree that
animals could not complete the task; 1.0mg/kg diazepam was
first tested when all subjects were given the same 0.25mA shock
intensity and did not change trial completion or seek action la-
tency (main effect of treatment: F(1,11) = 0.14, p=0.71, F(1,11) =
0.23, p=0.64; Fig. 7a,b). However, it was possible that a ceiling
effect precluded detection of significant changes for many of the
subjects. We therefore tested diazepam after action suppression
was titrated using shock intensity (as shown in Fig. 6c). To con-
trol for the ascending dose order or additive effects, we also ana-
lyzed an additional saline injection session that was at least 48 h
after the last diazepam test. Diazepam produced increases in trial
completion under probabilistic punishment (main effect of treat-
ment: F(2.1,22.93) = 6.9, p, 0.01) for both doses (post hoc p values
, 0.022; Fig. 7c). These anticonflict effects of diazepam compli-
cated interpretation of seek action latency changes, as subjects were
completing trials at higher risk blocks than at baseline. Conse-
quently, we assessed seek latency up to the 10% risk block as this
was the risk block where all subjects were completing more

Figure 5. Neural calcium activity in the mPFC for the take action (blue vertical line) and reward delivery (brown vertical line). a–c, Take actions and reward delivery produced little effect on
mPFC calcium activity and were not influenced by task learning. d, Punished trials were not significantly different between Session 1 and Session 5–8 for the take action nor for reward deliv-
ery. n= 5–7. ns = not significant. Gray circles represent individual data points.
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than two trials (i.e., did not meet
exclusion criteria) on the first saline
day. Diazepam attenuated seek la-
tency increases (risk � treatment
interaction: F(1.57,17.3) = 7.76, p= 0.02;
Fig. 7d) at the 6% risk block (post hoc
p values , 0.04) and nonsignificantly
at the 10% risk block for 2mg/kg
diazepam (post hoc p values = 0.07
1 mg/kg and 0.051 2 mg/kg). These effects
were not observed at higher risk
blocks, although there were increased
amounts of variability (data not
shown). Importantly, these low doses
of diazepam had no effect on locomo-
tor reactivity to the shock with com-
parable activity levels seen on the
saline day (meanDiazepam 6 SEM: 2.3
6 0.24, meanSaline 6 SEM: 2.13 6
0.23; paired t test: t(10) = 0.52, p =
0.62).

Sex as a biological variable in
probabilistic punishment resistance
The work above was done in both
male and female rats. After the com-
pletion of data collection, without a
priori hypothesis, we analyzed behav-
ioral data with sex as a factor. While
the aim of this study was not to study
sex differences, the constructs of anxi-
ety and impulsive reward seeking rele-
vant to this task show stark sex
differences in prevalence. Overall, the
learning pattern of the task was similar
between sexes, with stabilization of
both male and female behavior after
;4 or 5 sessions as seen in Figure 8a
(main effect of session: F(3.27,84.8) =
9.98, p, 0.001) which did not interact
with sex (sex � session interaction:
F(11,285) = 1.67, p= 0.08).

Once behavior was stable, however,
females displayed increased sensitivity
to probabilistic punishment compared
with males with greater blockwise
decreases in trial completion for females
compared with males (sex � risk block
� session interaction: F(5,130) = 7.2,
p, 0.001; Fig. 8b). This difference was only present when the risk
of shock was �10% (post hoc p values , 0.03) and not during 0%
or 6% risk blocks (post hoc p values. 0.07). Interestingly, the “sen-
sitive” subgroup observed in Figure 2a exclusively included female
subjects, whereas moderate and resistant subgroups contained both
males and females albeit in different proportions (Fig. 8c).

Other task behaviors were also significantly different between
males and females. While latencies to complete the punished
seek action increased during risk blocks compared with no-shock
conditions, females showed heightened increases in seek latency
during risk blocks in probabilistic punishment sessions (sex �
risk block � session interaction: F(1,26) = 5.7, p=0.02, post hoc
p, 0.01; Fig. 8d). No differences were observed for seek action

latencies at the 0% risk block when no shocks were given (post
hoc p=0.99). Females were slower to complete the take action
compared with males (main effect of sex: F(1,26) = 7.03,
p= 0.014). While these differences appeared to depend on receiv-
ing punishment (sex � trial type interaction: F(2,52) = 3.34,
p= 0.043; Fig. 8e), post hoc testing indicated no significant differ-
ences between males and females in the 0% risk block, and
between unpunished or punished trials in risk blocks (post hoc p
values. 0.088). Both males and females showed similar latencies
to retrieve the food reward, suggesting comparable motivation to
acquire the reward (main effect of sex or sex � risk block � ses-
sion interaction: all F values , 1.1, p values . 0.29; Fig. 8f). To
more directly assess underlying reward motivation differences,
a cohort was also tested with a PR task following extinction
of probabilistic punishment. Males and females displayed

Figure 6. Behavioral effects of manipulation of reinforcer and punisher value. a, Decreasing reward value with 22 h of home
cage access to ad libitum food before a session (blue) decreased trial completion under probabilistic punishment and (b) potenti-
ated increases in latency to complete the punished seek action compared with the previous session (white). One subject (female)
was excluded from seek latency analysis in b due to inability to complete more than one trial in any of the risk blocks. c, d,
Adjusting the subjective value of the footshock punishment by changing shock intensity (blue) resulted in changes in trial com-
pletion under probabilistic punishment and seek action latency. e, Extinguishing the risk of punishment by omission of the foot-
shock presentation resulted in an increase in trial completion and (f) decreases in seek action latency over the two extinction
sessions (blue/light blue). *p, 0.05 versus white symbols. #p, 0.05, Extinction 1 versus Extinction 2. n= 12, except where
otherwise noted. Gray circles represent individual data points.

5072 • J. Neurosci., June 24, 2020 • 40(26):5063–5077 Jacobs and Moghaddam · Assessment of Probabilistic Punishment



comparable motivation, as measured through PR breakpoint, to
obtain the food reward (unpaired t test: t(10) = 0.72, p= 0.48;
Fig. 8g).

To determine whether these effects were due to differences in
body size, in one cohort we tested performance after adjusting
shock intensity for body weight (1mA/kg). For males it was
observed that trial completion decreased when the risk of shock
was �30% (effect of risk block: F(1.6,11) = 6.45, p values , 0.04).
Females, however, showed significant decreases at �10% shock
risks (effect of risk block: F(1.6,11.4) = 11.6, p values, 0.001).
Importantly, body weight-adjusted shock intensity had no effect
on the amount of trial completion under probabilistic punish-
ment for either sex (effect of shock intensity: F values , 0.1, p
values. 0.7; Fig. 8h), suggesting that body weight is not a critical
factor in punishment resistance. This was further supported by a
second cohort exposed to a shock threshold procedure where no
differences between sexes were seen in shock intensity required
to elicit a flinch response (unpaired t test: t(10) = 0.71, p= 0.49;
Fig. 8i). These data suggest that differences in punishment resist-
ance were not due to general sensory differences between males
and females. Finally, both sexes showed similar activity in
response to the shock and during ITI periods, suggesting similar
reactivity to the shock despite body weight differences (unpaired
t tests: t values, 2.06, p values. 0.05; Fig. 8j).

While estrous cycle was not systematically investigated in the
present study, analysis of female subject data during the 5 con-
secutive stability sessions (the length of the estrous cycle) did not
reveal any consistent fluctuations on a day-to-day basis (data not
shown). To assess whether overall trial completion or seek la-
tency was differentially affected by sex in other tasks manipula-
tions, such as shock extinction, satiety tests, and diazepam
treatment, we performed additional two-way ANOVAs using sex
and manipulation or treatment as factors. No significant sex �
treatment or sex � manipulation interactions were observed for
overall trial completion (F values, 2.1, p values. 0.12) or mean
seek latency in risk blocks (F values, 1, p values. 0.46).

Integration of probabilistic punishment in males and
females after titrating shock intensity
Both males and females showed changes in task behavior when
we adjusted shock intensity to produce similar overall levels of
trial completion (Fig. 9a). These procedures produced nearly
identical probabilistic punishment resistance and seek latency
increases between sexes (effect of sex or sex � risk block

interaction: F values, 1.5, p values. 0.26; Fig. 9b,c). However,
the intensity of shock needed to achieve these comparable behav-
ioral results was significantly higher in males compared with
females (unpaired t test: t(10) = 3.47, p, 0.01; Fig. 9b, inset). To
better understand whether males and females integrate risk of
punishment into reward-guided actions differently, we modeled
action suppression by risk of punishment using a 4PLR similar
to those used to assess cost-benefit decision-making (Friedman
et al., 2017). We fit a sigmoid to individual data from titrated
shock trials, when presumably the subjective suppressive effects
of the shock were equal, and revealed three distinct phases: a
high action phase, a transition phase, and a low action phase
(Fig. 9d–f). Effects of probabilistic punishment on action sup-
pression (trial completion) were well predicted by the model (R2

= 0.64-0.97), and comparison of small sample size-corrected
Akaike information criteria values between the 4PLR model and
a linear regression revealed the 4PLR was the preferred model
(paired t test: t(11) = 2.4, p=0.03). The use of the 4PLR model
allowed us to assess whether the integration of punishment risk
into behavioral actions differed between sexes. This was achieved
by fitting a straight line to the transition from high to low action
(i.e., the linear portion of the sigmoid; Fig. 9d). The similar slope
steepness (unpaired t test: t(10) = 0.30, p= 0.76; Fig. 9g) revealed
that males and females demonstrated comparable patterns of
integrating punishment risk when transitioning from high to low
action.

Discussion
Actions we execute to obtain a reward are often associated with
the probability of harm occurring. Learning about this probabil-
ity allows for appropriate computation of risk and guides future
action by weighting that risk against the value of obtaining a
reward. Impaired learning of this probability may be critical for
the pathogenesis of anxiety or reckless and impulsive behavior.
To investigate this mode of probability learning, we developed a
seek-take instrumental task where the seek action was associated
with varying probability of punishment while the take action
remained safe and was followed by reward delivery. Animals
learned to adapt to probabilistic punishment and exhibited a sta-
ble but individualized pattern for inhibiting reward-guided
actions as a function of punishment probability. Recording of
neural activity in the mPFC during the task revealed that risky
action encoding in this region is involved in learning of punish-
ment probability. In particular, the behavioral measure of

Figure 7. Effects of systemic diazepam treatment. a, b, Under conditions where the shock intensity was fixed at 0.25mA for all subjects, no effects of 1.0 mg/kg diazepam (light blue) were
observed on trial completion nor seek action latency compared with saline (light gray). c, After behavior was titrated such that all subjects showed sensitivity to probabilistic punishment, 1.0
and 2.0 mg/kg diazepam increased resistance to punishment and (d) attenuated increases in seek action latency at lower risks. Performance returned to saline levels after diazepam testing
(dark gray). *p, 0.05, 1.0 and 2.0 versus 0.0 mg/kg. n= 12.
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learning was associated with changes in phasic mPFC neuronal
activity during risky seek actions but not during the safe take
actions or reward delivery. The task was further characterized by
establishing that sex is a critical biological variable and that inhi-
bition of behavior as a function of punishment probability is sen-
sitive to manipulations in reinforcer and punisher value, and
anxiolytic treatment.

Punishment probability learning during reward-guided
actions
Our task provides a tool to measure punishment probability
learning. During the first session where animals were exposed to
the risk of punishment during the seek action, their behavior
remained unchanged until the risk increased to 18%. But in sub-
sequent sessions, animals adjusted their behavior earlier. A

Figure 8. Assessment of sex differences in the probabilistic punishment task. Green represents male (M) data. Orange represents female (F) data. a, Patterns of task acquisition were similar
between males and females, both of which showed stable behavior after about Sessions 4 and 5. b, Generally, males were less sensitive to punishment compared with females; that is, males
completed more trials than females after task behavior stabilized (circles), although they did not differ when no footshock risk was present (triangles). c, Individual data demonstrating punish-
ment-resistant (blue lines) and moderate (gray lines) subcategorized males were observed, but only females were observed to be resistant, moderate, and sensitive (red lines) to punishment.
d, Females showed increased latencies to complete the seek action compared with males when the risk of shock was present. e, Take action latency increased in females compared with males,
although this effect was not uniquely attributed to risk nor if the take action was preceded by a punished (P) or unpunished outcome (UP). f, Latency to retrieve the reward did not differ
between sexes. g, Motivation for sucrose pellets was similar as assessed through a PR task. h, Titrating shock intensity based on body weight failed to exert a significant effect in males or
females. i, Flinch sensitivity to the shock did not differ between sexes. j, Sex differences did not appear to be related to general locomotor activity nor shock reactivity during the task.
*p, 0.05 versus female. #p, 0.05 versus Session 1. 1p, 0.05 versus 0% risk block. n= 12-28. Gray symbols and x’s represent individual data points. ns = not significant.
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critical aspect of this learning process was that a robust change in
behavior was only seen for the risky seek actions, and not for
risk-free take actions or reward retrieval actions. This supports
the notion that changes in behavior as training progressed were
not due to reduced motivation or general motor effects, and
were due to punishment probability learning.

The stability of performance after learning allowed us to
examine the effect of several manipulations on performance.
This led to the following key observations on how reward-guided
actions are impacted by punishment probability. First, although
behavior stabilized, there was a high level of individual variabili-
ty, in particular with respect to when subjects stopped respond-
ing. Some subjects displayed complete resistance to the risk of
punishment, whereas others were more sensitive. Open field
behavior, a traditional method of assessing anxiety, was not asso-
ciated with these individual differences. This indicates that indi-
vidual differences observed in our task are not due to inherent
trait anxiety but relate to learning and expression of punishment
probability. Behavioral differences were also absent in the no-
shock trials, indicating that motivation to work for reward, in
the absence of punishment risk, was not a factor in differences
to risk of punishment. Thus, the present task provides a valua-
ble behavioral tool for future investigation of individual differ-
ences in the emergence of phenotypes related to anxiety and
impulsivity.

Second, after learning, behavior was flexibly influenced by
changes in the value of the reinforcer or punisher. The sensitivity
of behavior in the current task to value manipulation is consist-
ent with human behavior, providing a valid clinical model for

assessing physiological or maladaptive reward and punishment
valuation or risk depreciation (Bechara et al., 2002; Hartley and
Phelps, 2012).

Third, the increases in the latency of the seek action may pro-
vide a novel model for the anxious apprehension state commonly
associated with some anxiety disorders. Anticipation of, and ad-
aptation to, potential harm are fundamental features of anxiety
(Grillon et al., 2009). Consistent with this notion, the anxiolytic
diazepam reduced the impact of punishment risk on seek action
execution and latency. In the context of anxiety, another interest-
ing and clinically relevant observation was that, when the risk of
shock was removed after learning, seek action latency remained
elevated until the second extinction session. The sustained anxi-
ety-like behavior despite extinction of punishment may provide
a useful model for assessing normal or pathologic coping with
changes in punishment risk over time.

mPFC and learning of punishment probability
Localized lesions and manipulations of neuronal activity have
demonstrated that learning of action-outcome associations
involves the mPFC (Balleine and Dickinson, 1998; Ostlund and
Balleine, 2005). Electrophysiological recordings during instru-
mental learning show that this learning is expressed at a dynamic
level throughout the PFC by emergence of a phasic response dur-
ing action execution (Sturman and Moghaddam, 2011; del Arco
et al., 2017). Moreover, while the adaptive response of individual
neurons is both inhibitory and excitatory, the net population
response following action execution is largely inhibitory (Mulder
et al., 2003; Homayoun and Moghaddam, 2009). After learning,

Figure 9. Titration of behavior using shock intensity and modeling for males (green) and females (orange). a, Altering shock intensities produced increases or decreases in task completion
to result in near 50% suppression of task completion. b, c, These manipulations produced near-identical changes in trial completion and seek action latency in males and females. b, Inset,
Higher shock intensity for males was required to produce comparable male and female behavior. d, A representative subject’s data showing high, low, and transition states and the fit of the
4PLR model (dashed line). The linear portion of the sigmoid was determined by fitting a linear line (red line) to the bend points of the sigmoid (red squares). e, f, Individual risk effect curves
revealed that behavior was well captured using a 4PLR to assess high action, low action, and transition states for behavior during risk of punishment for both males and females. g, The steep-
ness of the transition state (i.e., the linear portion of the sigmoid) was not different between males (M) and females (F). Gray symbols and panels d, e, f represent individual data points.
n= 6/sex. *p, 0.05. ns = not significant.
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phasic response of mPFC neurons during action execution is
flexible and changes with learning of new rules about outcome
contingencies (Simon et al., 2015; del Arco et al., 2017). Given
these studies, and that mPFC is implicated in fear conditioning
and other models of punishment representation (Corcoran and
Quirk, 2007; Park and Moghaddam, 2017a,b), we had hypothe-
sized that learning of punishment probability is, in part, repre-
sented in mPFC. Fiber photometry was used to assess changes in
population activity because it allows for evaluation of mPFC
encoding of shock during learning.

The inhibitory response during peri-seek action periods of
the no-shock blocks was consistent with previous studies that
have recorded unit activity during action execution in instru-
mental goal-directed tasks (Simon et al., 2015; Hong et al., 2019),
suggesting that our output measure reflects phasic neuronal ac-
tivity. Alternatively, these inhibitory responses may represent
disengagement of prefrontal cortical regions when motor actions
become automatic or well learned (Wu et al., 2004; Sturman and
Moghaddam, 2011; Kupferschmidt et al., 2017). We observed a
significant reduction in this peri-seek action phasic response as
punishment risk was learned. Importantly, this change in neuro-
nal activity, similar to the change in behavior, was selective to the
seek action. Responses to events that were not associated with
risk (i.e., take action and reward delivery) did not significantly
change with learning, strengthening the notion that mPFC
ensembles are selectively encoding learning of punishment risk.
This is a novel learning role for the PFC and consistent with its
established role in mediating punishment-related decision-mak-
ing after learning (Friedman et al., 2015; Orsini et al., 2018).

Further studies are needed to establish the neuronal basis of
the reduced inhibitory response in calcium activity seen during
probabilistic punishment learning. One possible mechanism is
changes in the recruitment of inhibitory interneurons, which
then influence the activity of the excitatory pyramidal cells.
Another possibility is changes in the recruitment of neuromodu-
lators, such as dopamine and norepinephrine, which generally
inhibit the firing rate of spontaneously active neurons.
Dopamine and norepinephrine projections to the mPFC are sen-
sitive to stress- and anxiety-provoking contexts (Deutch et al.,
1990; Pezze and Feldon, 2004; Morilak et al., 2005). While these
modulators generally do not produce overt excitatory or inhibi-
tory responses on their target cells, they may influence ongoing
responses.

The excitatory response to shock was consistent with previous
studies showing that PFC responds strongly to stressors by
increasing glutamate release (Moghaddam, 1993). While it has
been proposed that mPFCmay adapt and desensitize its response
to known stressors (McKlveen et al., 2015), we did not observe
an overt reduction in phasic response to the footshock, suggest-
ing that any PFC-mediated learning of probabilistic punishment
in this task may be unrelated to adaptation to pain perception. It
is, however, important to consider that population-level activity
measured in fiber photometry may arise through a variety of
processes. For example, while no change in population-level
response may indicate a stable response of a brain region, it may
also reflect a bidirectional change in both excitatory and inhibi-
tory responses. Consequently, future studies with cell-specific
and functional manipulations will advance our understanding of
punishment learning.

Sex as a biological variable in probabilistic punishment
resistance
Male and female rats learned the probabilistic punishment task
at the same rate, but after learning, sex differences indicated

greater risky action apprehension and sensitivity to punishment
in females. This effect was not related to motivation to obtain
reward, body size differences, or basic shock reactivity as adjust-
ing shock for body weight failed to alter punishment resistance.
These findings are consistent with, and complement, the emerg-
ing data involving sex-related differences in risk taking during
reward-seeking behavior (Van den Bos et al., 2013; Orsini and
Setlow, 2017; Becker and Charthoff, 2018).

The sex differences in seek action latency, however, dissipated
when shock intensity was individually adjusted to produce com-
parable levels of overall trial completion. This suggested that, if
the subjective value of the punishment is normalized, there is no
sex difference in transition from resisting punishment to inhibi-
ting behavioral responding. This concept was verified using a
four-parameter sigmoid model, where we observed that the tran-
sition from high to low action states had a similar steepness in
both sexes. The sigmoidal pattern revealed in this model is simi-
lar to that reported in choice-based decision-making tasks
(Friedman et al., 2017).

Given the sexual dimorphisms seen in symptoms of psychiat-
ric illnesses, including impulsivity and anxiety, our overall obser-
vation on sex differences in punishment-resistant behavior
highlights the importance of using biological sex as a variable to
inform our understanding of the neuronal basis of reward-moti-
vated actions.

In conclusion, the present study provides a powerful behav-
ioral model for determining biological and environmental factors
that influence the resistance of reward-seeking behavior to prob-
abilistic punishment. The learning of this form of probabilistic
contingencies appears to involve changes in the mPFC as this
region flexibly adapted its response to risky actions as contingen-
cies were learned. Our data further emphasizes the importance
of studying the impact of sex as a biological variable.
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