
Fundamentals
of

Fiber Photometry
Workflows

Christopher S. Johnson
January 3rd, 2023

Table of Contents

Preface 3

Chapter 1: Hardware/Software Environment 4
System Requirements 5

Downloads and Installations 6

Updating Bonsai Software and Packages 11

Chapter 2: Standard Photometry 14
FP3001 System 15

FP3002 System 18

Chapter 3: Synchronization 32
Software 33

Hardware 46

Machine Vision 51

Chapter 4: Data Acquisition 66
Delayed Start 66

Hardware Control 71

Manual Control 73

Basic Periodic Control 80

Periodic Control, Variable Duty Cycle 84

Periodic Control, Delayed Start 97

Second Order Periodic Control 105

Chapter 5: Stimulation 118
Delayed Start 118

Hardware Control 125

Manual Control 128

Basic Periodic Control 141

Periodic Control, Variable Duty Cycle 149

Periodic Control, Delayed Start 161

Second Order Periodic Control 169

Chapter 6: Machine Vision 181
Synchronized Behavioral Camera 182

One Chamber Animal Tracking 191

1

Three Chamber Animal Tracking 207

Chamber Dependent Data Acquisition 216

Chamber Dependent Stimulation 223

Real Time Analysis 228

Appendix I: Node Glossary 255
Acquisition Control 255

Digital IOs 256

Digital Output 258

FP3001 259

FP3002 261

Group Regions 279

Photometry Data 281

Photometry Writer 283

Stimulation 285

Temperature 287

Visualize ROI 288

With Latest Timestamp 292

Appendix II: Hotkeys 293

Appendix III: Troubleshooting 295
OpenCV Errors 295

OpenTK Errors 301

Camera Connection 308

2

Preface

This document discusses the fundamentals of developing workflows for conducting
experiments using the Neurophotometric’s fiber photometry systems. The material is
presented in a project based learning environment that builds in complexity over the
course of each chapter.

The presentation begins with a chapter dedicated to setting up an environment for
workflow development. Throughout this document, we utilize an open-source visual
programming language called Bonsai (https://bonsai-rx.org/) to create workflows for
communicating with and recording data from external sources, including our fiber
photometry systems.

From there, we delve into fundamental concepts found within fiber photometry
experiments. Chapter 2 presents our standard workflows for acquiring data from the
FP3001 and FP3002 fiber photometry systems. In Chapter 3, we discuss the
synchronization of parallel data streams, where we highlight common techniques for
aligning with a fiber photometry data stream. Chapter 4 builds on the idea of controlling
data acquisition for the FP3002 system. For Chapter 5, we incorporate the use of laser
stimulation during experiments, showcasing different ways to control stimulation.
Finally, Chapter 6 explores implementations of machine vision techniques for animal
tracking and closed loop experiments.

This document concludes with several appendices including a node glossary, useful
hotkeys, and a troubleshooting guide. The Node Glossary provides details on each of
the individual nodes contained within our Neurophotometrics packages. The Hotkeys
section provides useful hotkeys for interfacing with Bonsai and our nodes. Finally, the
Troubleshooting section guides the reader through fixing common errors in fiber
photometry workflows.

3

https://bonsai-rx.org/
https://bonsai-rx.org/

Chapter 1: Hardware/Software
Environment

This chapter focuses on setting up an environment for fiber photometry workflow
development. We begin our discussion with the minimum hardware requirements for
conducting fiber photometry experiments within Bonsai. Then, we cover all of the
required downloads and installations for constructing the workflows shown in this
document. We conclude with a guide on how to manage and update the software
packages within Bonsai.

4

System Requirements

Operating System
Windows 10/11

Processor
64-bit, four logical cores, with a clock speed of 1.6GHz.

Graphics Card
None

RAM
8GB

Ports
1 Type A USB 3.0 port (SuperSpeed logo should be visible)

NOTE: please keep in mind, your additional hardware (such as behavioral
cameras, keyboards, mice, etc) may require USB ports as well. The FP3002
cannot run through a USB hub. So please ensure you have sufficient ports for all
necessary hardware.

Notes
- The Neurophotometry Fiber Photometry systems must be connected directly to

Type A USB 3.0 ports.
- A one meter Type A USB 3.0 to Micro-B cable, provided by Neurophotometrics,

should be used to connect the FP3002 system to the computer.
- Neurophotometrics Fiber Photometry systems cannot be connected to USB

hubs as they require the full bandwidth of the USB 3.0 port.
- Internet access is required for initial downloads and installations as well as for

future updates.

5

Downloads and Installations

In order to set up the software environment for fiber photometry workflow
development, three pieces of software need to be downloaded and installed. First,
FTDI’s Virtual COM Port (VCP) driver will be installed in order for the
Neurophotometrics Fiber Photometry Systems to appear as additional COM ports
available to the PC. Second, the Spinnaker Software Development Kit (SDK) will allow
for communication between the PC and the internal camera on the system. Finally,
Bonsai will be used as a visual programming language that can easily access open
source software published by Neurophotometrics.

FTDI Drivers:
This allows the Neurophotometrics Fiber Photometry System to communicate over the
USB 3 port to Bonsai by treating USB connections as COM ports.

Go to the FTDI VCP Drivers website (https://ftdichip.com/drivers/vcp-drivers/), and
navigate to the currently supported “Processor Architecture” table to find the list of
downloadable drivers. Find the row that contains the Windows OS on your computer,
most likely labeled “Windows (Desktop)*”, and find the column labeled “X64 (64-Bit)”.
Click the link in that cell to download the .ZIP file for the drivers. Then click the “Setup
Executable” link in the rightmost column of that row to download the .exe file that will
set up the drivers.

6

https://ftdichip.com/drivers/vcp-drivers/
https://ftdichip.com/drivers/vcp-drivers/

In the downloads folder of the computer, there will be two .zip files with names similar
to “CDM v2.12.36.4 WHQL Certified” and “CDM212364_Setup”. Navigate into the
“CDM212364_Setup.zip” folder and find the “CDM212364_Setup.exe” file. Double click
it to open up the installation wizard.

7

Follow the steps in the “FTDI CDM Drivers” setup window to complete the installation.

8

Spinnaker SDK:
This is used to allow the computer to communicate with the internal CMOS camera on
the Fiber Photometry system.

Download the SpinnakerSDK_FULL_1.29.0.5_x64.exe
(https://flir.app.boxcn.net/v/SpinnakerSDK/file/622481657674). Currently only the
1.29.05 version of the SDK is compatible. Run the .exe file and follow the installation
wizard. When choosing between Camera Evaluation or Application Development
choose Camera Evaluation. When at the “GigE Interface” window, uncheck "I will use
GigE Cameras" and complete by clicking “Install.”

9

https://flir.app.boxcn.net/v/SpinnakerSDK/file/622481657674

Bonsai Software:
Bonsai is an open source software that utilizes a visual programming language for
creating and synchronizing heterogeneous data streams. This software interfaces with
NuGet to allow for easy installation of open source software pages, including our
packages for communicating with Neurophotometrics Fiber Photometry systems.

Download the .exe installer for the latest stable version of Bonsai
(https://bonsai-rx.org/). When installation is complete, Launch Bonsai and it will
complete its installation. Internet access is required for the initial launch of Bonsai as it
will automatically download and install several necessary software packages off of
NuGet. At the start up window, click on Manage Packages. Navigate to the Browse
tab, and set “Bonsai Packages” as the Package Source. Now search for the “Bonsai -
Starter Pack” and install it by clicking it and clicking the “Install” button that pops up.
This will install all of the Bonsai packages used in the majority of workflows. Note: Do
not check the “Include Prerelease” box because it will allow the installation of
packages still in development.

Next, change the Package Source to “Community” and search for the
“Neurophotometrics” packages. Install the “Neurophotometrics.Design” package.
Doing so will also install the “Neurophotometrics” package with all of their
dependencies.

10

https://bonsai-rx.org/
https://bonsai-rx.org/

Updating Bonsai Software and Packages
Keeping the Bonsai software and Neurophotometrics packages up to date on the
Bonsai Packages and the Bonsai Software is vital to keeping experimental setups
running smoothly and getting the most out of the Neurophotometrics Fiber Photometry
systems. Below, we outline the processes of updating packages and updating the
Bonsai software.

Updating Packages:
Neurophotometrics pushes updates to our Bonsai packages in order to add new
features and fix known bugs in the software. Upon release of package updates, users
will be notified via an email blast. It is best to update the “Neurophotometrics” package
immediately after receiving this email blast. To update, open the Bonsai software and
navigate to the “Manage Packages” window.

11

Once in the “Manage Packages” window, navigate to the “Updates” tab and select
“Community Packages” as the “Package Source”. If there are newer versions of the
“Neurophotometrics” packages, they will appear here. Click the
“Neurophotometrics.Design” Package and click “Update”. This will update both
“Neurophotometrics” packages and all of their dependencies.

If you change the “Package Source” to “All”, you will find the available updates for all of
your other installed packages. Most packages are safe to update in this way; however,
be cautious updating the “Bonsai - Spinnaker”, “OpenCV.NET”, and “OpenTK”
packages. These packages are not always forward compatible, so if these are updated,
then the “Neurophotometrics” packages might not be able to work properly. The safest
way to update these packages is to update the “Neurophotometrics.Design” package
which will automatically update these packages to the correct versions.

12

Updating Bonsai Software:
As Bonsai Packages are updated to newer versions, occasionally new features are not
compatible with older Bonsai Software versions. To update the Bonsai Software,
uninstall Bonsai then reinstall the latest stable version. Find “Bonsai” inside of the
Windows search bar. Right click it and click “uninstall”. This will open the “Programs
and Features” window. Find “Bonsai” in the list of programs, click it, and click
“uninstall”. Then, follow the “Downloads and Installations” Bonsai section on
downloading and installing the latest stable version of Bonsai.

13

Chapter 2: Standard Photometry

In this chapter, we develop the idea of a standard fiber photometry workflow. This
workflow is used to record interleaved fiber photometry data, saving it to a .csv file. The
“Standard Photometry” workflow not only provides a basic way of recording
photometry data, but also acts as a base for more complex workflows. In the two
sections of this chapter, we will cover the construction and configuration of standard
workflows for recording from both the FP3002 and FP3001 systems. In later chapters
we will build off of the FP3002 workflow developed here.

14

FP3001 System
The “FP3001” node is a source node used to communicate with the FP3001 system.
This node processes the information coming from the FP3001 system and generates
photometry data frames to represent the data. Each photometry data frame contains
an image, frame counter, system timestamp, frame flags, and activity data. The
construction of the standard FP3001 photometry workflow is the exact same as the
FP3002 workflow, except that the “FP3002” node is replaced with the “FP3001” node.

Begin configuration of the “FP3001” node by specifying the properties found within the
property panel:

AutoCrop: A boolean value used to specify whether or not the camera will
automatically crop the incoming image. When set to “True” the “FP3001” node will
crop the image to the smallest rectangle bounding all of the drawn ROIs. This act of
cropping the image allows the camera on the system to run at faster frequencies.

15

ExposureTime: An integer value used to specify the exposure time of the internal
camera of the FP3001 system. This value must agree with the FPS set on the driver
box such that the exposure time is at least one millisecond less than the period of data
acquisition. For example, when the FPS is set to 40Hz, the period of data acquisition is

equal to . In this 25ms duration, the camera must go𝑃𝑒𝑟𝑖𝑜𝑑 = 1
40𝐻𝑧 ⋆ 1000𝑚𝑠

1𝑠𝑒𝑐 = 25𝑚𝑠

through its exposure time and its dead time. The dead time must be at least 1ms which
means in this 40Hz case, the exposure time is recommended to be 24ms.

Index: An integer value used to specify which spinnaker camera to connect. This
property is used to ensure that the “FP3001” node correctly connects to the FP3001
system and not a behavioral camera.

Regions: A custom data type property used to store the dimensions and locations of
the user-defined ROIs. This property is only used to store this data and not used to
define the ROIs. In order to define the ROIs, double click the “FP3001” node while the
workflow is stopped and the system is connected.

Serial Number: A string value used to specify the serial number of the camera to
connect. Similar to the “Index” property, this property can be used to ensure that the
“FP3001” node correctly connects to the FP3001 system and not to a behavioral
camera.

Trigger Mode: A dropdown menu used to specify the trigger sequence of the FP3001
system. This must agree with the driver box in order for the “FP3001” to assign the
correct frame flags to the photometry data frames.

16

Once the properties shown above are specified, double click the FP3001 node to open
a calibration window. Begin data acquisition on the driver box and the calibration
window should populate a running plot of photometry data. There will be a signal for
each ROI specified, and if none are specified the signal will represent the pixel average
of the whole image. To draw ROIs, click the “Calibrate Regions” button to open a new
window containing the camera image. In this new “Regions” window, you can draw
regions by left clicking and dragging.

Within the “Regions” window you can move already drawn ROIs by left clicking them
and dragging them to a new position. You can resize an existing ROI by right clicking it
and dragging. While interacting with the “Regions” window be cautious about stray
clicks within the window as they will draw ROI that are too small to see or select by
right clicking. Whenever drawing ROIs, double check that the number of signals shown
in the “Calibrate Regions…” window matches the desired number of drawn ROIs in the
“Regions” window. If there are more signals than visible ROIs, then a small ROI has
been accidentally drawn. You can correct this by using the “Tab” key within the
“Regions” window to cycle through ROIs to select the unintended ROI. Then press the
“Del” key to delete the extra ROI.

17

FP3002 System
In order to have a standard workflow for recording from the FP3002 system we need to
be able to connect to the system, process the data coming from it, and record it to a
.csv file. We also include the ability to visualize the data in real time. The workflow
presented here accomplishes all of these goals.

In order to construct this workflow, begin by adding an “FP3002” node to a new
workflow. The “FP3002” node connects Bonsai to the FP3002 system and configures
all of the system settings.

18

Click the “FP3002” node and find the “Properties” panel on the right side of the Bonsai
workflow.

Connect Bonsai to the FP3002 system by setting the value of the “Port Name” property
to the correct COM port. A proper connection will show the FP3002 system’s
information in Bonsai’s command window. This information will only display if the
FP3002 system is powered on and connected via a USB 3.0 port on the computer.

The information populated here consists of the system’s serial number labeled as
“WhoAmI”, the hardware version labeled as “Hw”, the firmware version labeled as “Fw”,
and the current system timestamp in seconds since the system powered on.

19

In order to allow for higher camera capture frames rates, be sure to set the “AutoCrop”
property to “True”. This will cause the camera to crop its image to the smallest
bounding rectangle that contains all of the defined ROIs. Once Bonsai is connected to
the FP3002 system through the “FP3002” node, double click the node to open the
“FP3002 Setup” window. This is where the configuration settings of the system are
located. For a standard photometry workflow, there are four settings that should be
configured: Trigger Sequence, LED Power, Frame Rate, and Regions of Interest.

20

Trigger Sequence:
The “Trigger Sequence” panel of the “FP3002 Setup” window configures which LEDs
are triggered and in what order. The last row in the panel does not affect the trigger
sequence and is used to add new LEDs to the sequence.

To delete an LED, select a row in the sequence and click the delete (Del) button on the
keyboard.

To add an LED, click the dropdown menu on the bottom row and select which LED to
use.

To configure the order, click the drop down menu on each row and select where each
LED goes in the sequence.

21

LED Power:
In the “FP3002 Configuration” panel of the “FP3002 Setup” window is a “Power”
section. This section sets the percentage of power going to the LED when it is
triggered in the trigger sequence.

The power coming out of a single fiber of a patch cord should be high enough to
record activity and low enough to limit photobleaching of the region of the brain that is
being observed. Generally, it is recommended that the power coming out of the ferrule
is to be approximately 50μW for 200μm fibers and approximately 120μW for 400μm
fibers, to start. Whenever possible, use the lowest light powers possible. This will
damage the tissue less and increase longevity of the experiment. These
recommendations are valid for most experiments. For longer experiments (upwards of
5 hours), consider lowering the duty cycle of the LEDs and/or lowering the LED
powers.

In order to configure the light power for an experiment, you must use the “Calibrate
Power” tool in conjunction with a power meter. Click the “Calibrate Power” button
found in the “Setup” panel of the “FP3002 Setup” window. Upon clicking the “Calibrate

22

Power” button, a “Calibrate Power” window will appear. This window contains a power
scroll bar for each LED that allows you to manually adjust each LED’s power while
measuring the power of the light coming out of the ferrule.

Once the appropriate percentage of power is found for each LED, close the “Calibrate
Power” window and enter these values into the “FP3002 Configuration” panel.

Frame Rate:
The “Frame Rate” property specifies the frequency at which photometry data frames
are generated. This value has units of “Hertz” and directly determines the frame rate of
the internal camera. Indirectly, this value also determines the frequency of each LED
since the current LED in the trigger sequence transitions every camera frame. This
value ranges from 16-200Hz, however for higher frame rate, the “Auto Crop” property in
the “FP3002” node’s property panel must be set to “True”. The frame rate value will be
dictated by the response kinetics of the sensor that is to be observed. The frame rate
must be set to accommodate the response kinetics of a given sensor (e.g. 20 Hz for
GCaMP6) to capture both the excitation and emission timings in a trigger sequence.
Please look up the paper where the sensor in use was published to see these kinetics.
For *most* of the newer sensors, 30Hz (per wavelength) is the minimum and a safe
starting point. Please note, several of the new GRABs will require >60Hz per
wavelength to properly visualize the kinetics.

23

Regions of Interest (ROIs):
In order to define the ROIs, click the “Calibrate Regions…” button within the “FP3002
Setup” window. This will open a new window called “Calibrate Regions…” which
displays a sample signal for each defined ROI. If no ROIs are defined yet, it will still
show a signal that samples the whole image. When this window is opened, the system
will be in calibration mode such that the frame rate is set to 40Hz and the trigger
sequence consists of only the L470 LED. Here you can manually adjust the power of
the L470 LED to help see the images of the fibers during alignment and defining of the
ROIs.

24

In this window, click the “Calibrate Regions” button to open a new window containing
the image coming from the camera. This new window is called the “Regions” window
and is used to both align to a patch cord and to draw ROIs over the fibers of the patch
cord. For help aligning to a patch cord please see the “Connecting and Aligning My
Patch Cord” section of the “Hardware Manual”.

25

Once the patch cord is aligned and focused, left click and drag to draw an ROI on a
fiber. You can move the ROI by left clicking and dragging an already existing ROI. To
resize an ROI, right click and drag on an already existing ROI. In this window, be careful
about stray clicks because it is possible to accidentally draw small ROIs that are barely
visible. A simple test to determine whether or not extraneous ROIs have been drawn is
to verify that the number of signals in the “Calibrate Regions…” window matches the
desired number of ROIs. If an extra ROI is present, use the “Tab” key within the
“Regions” window to cycle the selected region until the extra ROI is selected. Then,
press the “Del” key to delete it. Once the ROIs are drawn, both of these windows and
the “FP3002 Setup” window can be closed and the rest of the workflow can be
configured.

26

The “FP3002” node deals with controlling the FP3002 system and bringing messages
from the system into Bonsai for processing and recording. This node outputs data of
type “Bonsai.Harp.HarpMessage”. This data type is not immediately writable to storage
and requires some amount of processing. The “Photometry Data” node is used to
process the data coming from the “FP3002” node.

The “Photometry Data” node processes the data coming from the “FP3002” node by
filtering out any data not related to photometry data. Then it converts the Harp
message containing the photometry data into a custom data type called “Photometry
Data Frame”. This “Photometry Data Frame” contains an image, frame counter, system
timestamp, frame flag, and activity data for each ROI. The “Photometry Data” node has
an associated visualizer that can be viewed by double clicking the node while the
workflow is running.

27

This visualizer contains a running plot of the interleaved signals coming from each ROI.
The toolbar on the bottom allows you to specify the capacity and the scale of the plots.
In the image above, each plot is specified to contain 300 data points at any given time
and each plot is set to autoscale. You can also manually set the minimum and
maximum of the y-axes in the “Scale” section. This toolbar also displays the cursor
position where the x value ranges from one to the capacity and represents the
(one-based) index of the data point closest to the cursor. The y value is the average
pixel value of that data point. This cursor position is updated when the mouse cursor
moves. For a visualizer with more customization options, please see the “Visualize ROI”
section below or visit the “Visualize ROI” node in the glossary

Once the data coming from the “FP3002” node is processed using the “Photometry
Data” node, it is ready to be written to storage using the “Photometry Writer” node.

The “Photometry Writer” node will write the photometry data into storage in the form of
a .csv file. The output file will have at least nine columns, below is a description for
each column.

Column 1, Frame Counter:
Provides a frame number for each photometry data frame. This frame number is
zero based where the zeroth frame is a null frame

Column 2, Timestamp:
The timestamp generated by the system for each frame. This timestamp has
units of seconds since the system turned on.

Column 3, LED State:
Indicates which LED, if any, were on for any particular frame. Here “1” indicates
the L415, “2” indicates the “L470”, “4” indicates the “L560”, and “7” indicates a
null frame (no LEDs).

28

Column 4, Stimulation:
A boolean value that represents whether stimulation is occurring during this
frame. This is NOT used to determine the Laser state, please see the “Chapter 5:
Stimulation” or the “Digital IOs” node’s entry in the “Appendix I: Node Glossary”
for more information on how to record the laser’s state.

Column 5/6, Output 0/1:
A boolean value that represents the state of the digital output ports during this
frame. If you are sending digital outputs at a rate different from the photometry
frame rate, please see the “Digital IOs” node’s entry in the “Appendix I: Node
Glossary” for more information on how to record the digital output port state.

Column 7/8, Input 0/1:
A boolean value that represents the state of the digital input ports during this
frame. For higher precision recording of the digital input ports, please see
“Digital IOs” node’s entry in the “Appendix I: Node Glossary” for more
information on how to record the digital input port state.

Column 9+, Region Data:
These are the columns where the relative fluorescence data will appear. Each
pre-defined ROI will have its own column. This is the raw data: average pixel
intensity per ROI per frame, normalized from 0 to 1.

29

The “Photometry Writer” node has a variety of configurable properties. Three of the
properties it has in common with the “Csv Writer” node: “File Name”, “Overwrite”,
“Suffix”. You can specify the “File Name” property by either double clicking the node
while the workflow is stopped, or clicking the “...” in the “File Name” text box. Be sure
to specify the file extension as “.csv” in the filename. The “Overwrite” property allows
the software to overwrite any files of the same name as specified in the “File Name”
property. The “Suffix” property allows you to keep the same file name for multiple
experiments by appending a unique suffix to the file name. You can either specify this
unique suffix to be an integer value or as a date-time value. The “Include Chart” and
“Include Regions” options allow you to generate a chart of the photometry data
collected during the experiment and an image showing the labeled regions.

With the combination of the “FP3002”, “Photometry Data”, and “Photometry Writer”
nodes a basic fiber photometry workflow is complete. However, it is highly
recommended to make use of the “Visualize ROI” node. This node provides a
customizable visualization of the photometry data being passed through the workflow.
Connect the “Photometry Data” node to the “Visualize ROI” node in parallel with the
“Photometry Writer” node.

30

The “VisualizeROI” node allows for the data from the “Photometry Data” node to be
displayed in the form of rolling plots. It has an automated layout that will maximize the
size of each plot based on the number of visible plots and the dimensions of the
visualizer window. This node has a user interface (UI) that allows for the user to adjust
the configuration settings of each ROI’s plot. The user has control over which plots are
visible, which are deinterleaved, and which are autoscaled. When an ROI’s plot is
deinterleaved, the user also has control over which LED plots are visible and which are
autoscaled. This new node also allows the user to toggle ON/OFF colorblind mode,
creating a more colorblind friendly color palette for deinterleaved plots. The “Visualize
ROI” node also gives the option to change the capacity of the plots, showing more or
less data points per window. For more information on the “Visualize ROI” node please
visit its entry in the “Appendix I: Node Glossary”.

31

Chapter 3: Synchronization

This chapter explores the concept of synchronization of data streams. Here we define
synchronization as the ability to compare the timestamps of one data stream to
another. With this definition, our goal of these sections is to generate data from multiple
sources, including the FP3002 system, and create methods for determining the relative
time between events of different data streams.

The method used for synchronization depends on the experimental design. In this
chapter, we present three techniques for synchronization: Software, Hardware, and
Machine Vision. The software synchronization technique is used to synchronize parallel
data streams within Bonsai. This is the most commonly used technique, however its
limitation is that it requires all data sources to have support within Bonsai. When trying
to synchronize with data sources without Bonsai support, there are methods of
hardware synchronization where TTL signals can either be sent through the FP3002
system into Bonsai or through a DAQ/Arduino into Bonsai. The hardware
synchronization techniques presented in this chapter also possess a limitation that
data sources must be capable of outputting +5V TTL signals. For cases in which a data
source is not supported by Bonsai and does not output a +5V TTL signal, we present a
method for synchronization utilizing machine vision. Here we use machine vision
techniques to record the states of LED indicators that can be found on many devices.

With these three techniques, most devices can be synchronized with the fiber
photometry data stream using Bonsai. However, if a device is unsupported by Bonsai,
does not have +5V TTL signals, and possesses no LED indicators, then more complex
hardware synchronization methods will have to be implemented.

32

Software
In many experiments, data is generated by multiple devices. When these devices have
support within Bonsai, their data streams can be easily synchronized using built-in
Bonsai nodes. Let’s begin our discussion with the standard photometry workflow.

In this photometry data stream, the FP3002 system generates a timestamp with great
precision. The clock used to generate this timestamp is reset every time the system
goes through a power cycle. This means that the units of time in the .csv file produced
by the “Photometry Writer” will be as seconds since the system turned on. Other data
streams will not have immediate access to the clock on the FP3002 system. In order to
make the timestamps of the photometry data stream comparable to timestamps of
another data stream, we need to share the same clock. An easy way to do this while
still keeping the precision of the system clock’s timestamp is to also timestamp every
photometry data frame with the computer’s clock. The computer’s clock will be
accessible to all data streams allowing them to be synchronized. To add a computer
clock timestamp to the photometry data stream, add a “Timestamp” node after the
“Photometry Data” node, parallel to the “Photometry Writer” and “Visualize ROI”
nodes.

33

The “Timestamp” node will generate data of type “DateTimeOffset”. This is a powerful
.NET structure that contains both DateTime data and TimeSpan data. It also allows you
to output data coming from the “Photometry Data” node. First, let's output the frame
number from the “Timestamp” node by right clicking it and selecting “Output → Value
→ FrameCounter”.

Then we will also output the desired timestamp. Here we have many options for the
type of timestamp. One of the most commonly used timestamps is the time of day,
total milliseconds. This will generate a timestamp with units of milliseconds since
midnight in the computer’s time zone. To output this type of timestamp, right click the
“Timestamp” node and select “Output → Timestamp → TimeOfDay →
TotalMilliseconds”.

34

Now, we can combine these two outputs using a “Zip” node and connect the “Zip”
node to a “CsvWriter” node. This way the photometry data stream will produce a
seconds .csv file containing the computer timestamp of every frame. This new .csv file
is readily alignable to the .csv file generated by the “Photometry Writer” node using the
frame numbers in both files.

35

To add a bit of organization to this workflow, we can select all of the computer
timestamp nodes, from the “Timestamp” node to the “Zip” node, and group them into
a single grouped workflow. Do this by right clicking the selected nodes and clicking
“Group → GroupWorkflow”.

36

Be sure to name and provide a description of the new grouped workflow. You can do
this within the properties panel of the grouped workflow.

37

Now that every photometry data frame is timestamped using both the system’s clock
and the computer’s clock, we can now timestamp every other data stream using the
computer’s clock. Since the computer’s clock is being shared, all of the computer
timestamps generated for every data stream are comparable to each other. Let’s show
this with a behavioral camera data stream and a keystroke data stream. First, create a
keystroke source node using the “KeyDown” node.

38

Connect the “KeyDown” node to a “Timestamp” node. Then right click the
“Timestamp” node and output the incoming value.

Then output the same type of timestamp that was used in the photometry data stream.
In the example we used time of day, total milliseconds so we will use that here as well.

Then use the “Zip” node to combine the two outputs and connect it to a “Csv Writer”.
This will save a column for the key pressed and a column containing the computer’s
timestamp which will be comparable to the computer timestamp in the .csv file created
by the “Csv Writer” in the photometry data stream.

39

Here we will group together the computer timestamp nodes again to add a level of
organization.

40

Next, let's add a behavioral camera data stream. This data stream will have to be
treated differently because it makes use of the “Video Writer” node, meaning we
cannot simply add a timestamp to the image data.

A common way of synchronizing the behavioral camera data stream is to generate a
frame number for every behavioral camera frame, combining a computer timestamp to
the generated frame number, and saving the timestamps of every behavioral camera
frame number to a .csv file. We will begin this process by connecting the camera’s
source node to a “Python Transform” node in parallel with the “Video Writer” node.

41

This “Python Transform” node will contain a python script that will count the number of
behavior camera frames that have been generated since the start of the workflow.
Declare a global variable to keep track of the number of frames that have occurred,
then increment it every frame and return the new value.

42

We can also provide a name for the python script from the “Python Transform” node’s
property panel.

43

To add a timestamp to the behavioral camera’s frame number, you can treat it the same
as in the keystroke data stream. Add a “Timestamp” node, then output the incoming
value and the same timestamp type as the photometry data stream. Then zip the two
outputs together and connect to a “Csv Writer” node.

44

We will add some organization by grouping together the nodes used to produce a
behavioral camera frame number and a computer timestamp. Then we will give the
grouped workflow a name and a description.

We now have three major data streams. The photometry data stream will save two .csv
files, one containing the photometry data timestamped using the system’s clock and
the other containing the photometry data frame number timestamped using the
computer’s clock. These two data sets can be aligned by frame number. Then the
other two data streams: the behavioral camera and keystroke data stream, are
timestamped using the computer’s clock, allowing these data sets to be aligned to the
timestamped photometry frame number data set.

45

Hardware
There are a variety of devices used within fiber photometry experiments that are not
currently supported by a NuGet package usable within Bonsai. This adds a level of
complexity for synchronizing with the photometry data stream. While designing an
experiment there are some key factors that will influence how the hardware will be
synchronized. These factors include the following:

- The communication protocol(s) that the external sensors use to communicate
with other devices

- The quantity of external sensors used in an experiment.
- Whether or not the external sensors utilize their own software to record data.

Let’s begin with an example experimental design consisting of the following devices:
- One FP3002 system.
- One lever switch that produces a +5V digital voltage when triggered.
- One lickometer that produces a +5V digital voltage when licked.

Here we have two external sensors: the lever switch and the lickometer, both of which
communicate with external devices via a +5V digital signal. Finally, neither of these
sensors utilize a specific software to record data. In order to synchronize these two
external sensors with the FP3002 system, we can utilize the digital input ports. In this
case, connect the external sensors to the digital input ports via BNC cables and
configure the FP3002 node such that the “Digital Input 0” and “Digital Input 1” settings
are specified to “Event Change”.

46

With the digital input ports configured and connected in this way, we can use “Digital
IOs” nodes to record and timestamp the signals from both external sensors using the
system’s internal clock.

This example showcases that up to two external sensors can be synchronized with the
photometry data stream so long as they output +5V digital signals. In the following
example, suppose we had an additional level switch. Here we have three external
sensors: two lever switches and the lickometer, all of which communicate with external
devices via a +5V digital signal. In this case, there are not sufficient digital input ports
on the FP3002 system to record the signals from all of the external sensors so our
previous solution is no longer valid. For experimental designs consisting of greater than
two external sensors that communicate via +5V digital signals, we can utilize an
Arduino with the Firmata protocol installed.

47

Follow the steps outlined below for installing “Standard Firmata” onto an Arduino:
1. Visit the GitHub link: https://github.com/firmata/arduino
2. Download Zip (in the "Code" drop down menu in the upper right).
3. Open up Arduino IDE.
4. Click Sketch -> Include Library -> Add .ZIP Library
5. Click on the .ZIP file you just downloaded (should be in the downloads folder)
6. Open the "StandardFirmata.ino" (Click File -> Examples -> Firmata ->

StandardFirmata)
7. Check that the Arduino is connected to the Computer via a USB.
8. Click Tools and double check that the "Board:" is filled with the correct board

type (usually Arduino Uno) and that "Port:" is the correct port (should be COMX,
where X is a number).

9. Finally, click the Upload button in the Arduino IDE to upload the code onto your
Arduino.

This will allow you to connect the external sensors to the Arduino and read their values
into Bonsai using the nodes found within the “Bonsai.Arduino” package. With this
setup, you can use the “Digital Input (Arduino)” nodes to read in the values from the
specified pins on the Arduino then you can synchronize with the photometry data
stream using the method described in the “Synchronize: Software” section.

48

https://github.com/firmata/arduino

This method of hardware synchronization is no longer limited to two external sensors.
Furthermore, it is no longer limited to digital signals. Arduino’s are capable of reading
analog signals up to +5V through their analog input pins. If utilizing the analog input
pins of an Arduino, be sure to change from a “Digital Input (Arduino)” node to an
“Analog Input (Arduino)” node.

Now let’s consider a case where the external sensors do not output a +5V signal such
that the FP3002 digital input port and the Arduino are not viable solutions. Suppose we
are working with an operant chamber that utilizes a proprietary software for recording
the data from its sensors. Many of these operant chambers possess a control box that
all of the external sensors connect to, then this control box is connected to the
computer to send the data from all of the external sensors to the company’s proprietary
software. In this case, the data from the external sensors will not be able to be
synchronized within Bonsai. However, there is usually a way to synchronize within the
proprietary software. Often the control box that connects all of the external sensors
also accepts digital input signals. If not, then the company that manufactures the
operant chamber and control box combination, also manufactures a DAQ that is

49

compatible with the control box or the proprietary software. In this case, we can output
a +5V digital signal from the FP3002 system to either the control box or the DAQ to be
synchronized within the proprietary software. The digital output 0 port of the FP3002
system can be configured within the “FP3002 Setup” window to output the camera’s
strobe signal. To do this, specify the “Digital Output 0” setting to be “Strobe”. With this
set, the digital output 0 port of the FP3002 system will output a +5V digital signal that
is HIGH while the internal camera is exposing and LOW during the internal camera’s
dead time.

For more information on the options for configuring the digital input and output ports of
the FP3002 system please visit the “FP3002” entry in the “Appendix I: Node Glossary”

50

Machine Vision
There are times when a device contains no support within Bonsai and is not
compatible with +5V TTL signals. Most of the time, these devices have their own
proprietary software for data acquisition. This can cause difficulty for synchronizing
data sets produced by Bonsai with data sets produced by a different software. These
devices tend to have a built-in method for hardware synchronization, however, these
hardware designs can quickly become complex. This document discusses a method
for synchronizing such devices, relying on the fact that many of these devices have an
interface with LED indicators. If a device, not supported by Bonsai, has status LEDs,
we can use machine vision techniques within Bonsai to synchronize data streams.

51

This workflow will timestamp each photometry data frame using the computer’s clock,
while using basic image processing techniques to read the state of the LED indicators
using an external camera. To construct this workflow, begin with the standard
photometry workflow.

To add a computer clock timestamp to the photometry data stream, add a
“Timestamp” node after the “Photometry Data” node, parallel to the “Photometry
Writer” and “Visualize ROI” nodes.

The “Timestamp” node will generate data of type “DateTimeOffset”. This is a powerful
.NET struct that contains both DateTime data and TimeSpan data. It also allows you to
output data coming from the “Photometry Data” node. First, let's output the frame
number from the “Timestamp” node by right clicking it and selecting “Output → Value
→ FrameCounter”.

52

Then we will also output the desired timestamp. Here we have many options for the
type of timestamp. One of the most commonly used timestamps is the time of day,
total milliseconds. This will generate a timestamp with units of milliseconds since
midnight in the computer’s time zone. To output this type of timestamp, right click the
“Timestamp” node and select “Output → Timestamp → TimeOfDay →
TotalMilliseconds”.

Now, we can combine these two outputs using a “Zip” node and connect the “Zip”
node to a “CsvWriter” node. This way the photometry data stream will produce a
seconds .csv file containing the computer timestamp of every frame. This new .csv file
is readily alignable to the .csv file generated by the “Photometry Writer” node using the
frame numbers in both files.

53

To add a bit of organization to this workflow, we can select all of the computer
timestamp nodes, from the “Timestamp” node to the “Zip” node, and group them into
a single grouped workflow. Do this by right clicking the selected nodes and clicking
“Group → GroupWorkflow”.

54

Be sure to name and provide a description of the new grouped workflow. You can do
this within the properties panel of the grouped workflow.

55

Now that the photometry data stream is constructed and organized, we can begin
constructing the external camera’s data stream. There are three commonly used source
nodes for connecting to external cameras and producing frames from them. For
Spinnaker cameras use the “Spinnaker Capture” node. For DirectShow based capture
devices use the “Video Capture Device”. Finally for most webcams, the “Camera
Capture” node is usable. This workflow will work the exact same way whether using
the “Video Capture Device” or the “Camera Capture” nodes. However, the “Spinnaker
Capture” node works slightly differently. The output of the “Spinnaker Capture” node is
of type “SpinnakerDataFrame” while the other two nodes output elements of type
“IplImage”. However, the “SpinnakerDataFrame” consists of an “IplImage” and
“ChunkData” so the machine vision techniques described in this section can still be
used with the “Spinnaker Capture” node if the “IplImage” is selected from the
“SpinnakerDataFrame”.

56

Create an external camera data stream by connecting the desired source node to a
“Video Writer” node.

Some configuration is available for the capture nodes and the “Video Writer” node. All
three capture nodes have the option to specify the camera’s index. For the “Camera
Capture” and “Video Capture Device” nodes, the internal camera on the “FP3002”
system will not be recognized, so if only one external camera is connected to the
computer, it will appear on index 0. However, the “Spinnaker Capture” node will
recognize the internal camera on the FP3002 system, so some care needs to be taken
so that the “Spinnaker Capture” and “FP3002” nodes do not try to both access the
same camera. The “FP3002” node registers the internal camera when applying a
firmware update so we need to only verify that the “Spinnaker Camera” is not trying to
access the internal camera. You can do this by specifying the “Index” or
“SerialNumber” properties of the “SpinnakerCapture” node.

57

The “Video Writer” node has a variety of properties that are configurable. Similar to the
“Csv Writer” node, be sure to specify the “File Name”, “Overwrite”, and “Suffix”
properties. Be sure to include the file extension in the “File Name” and that it matches
the “FourCC”. By default “FMP4” will be used as the “FourCC” in order to save an .avi
file. Next, set the “Frame Rate” property to the frame rate of the external camera. This
will allow the playback of the video to be at the same rate that the camera frames were
acquired.

With the source node and the video writer configured, it is time to implement our
machine vision algorithm for tracking the state of the LED indicators. We will begin by
generating a frame number for each external camera frame. This process will be done
in parallel to the “Video Writer” node. Insert a “Python Transform” node and implement
a basic counter script that counts the number of camera frames passed through the
node.

58

It is useful to rename the “Python Transform” node to indicate its purpose. Here we will
rename it to “Frame Counter”. Parallel to the “Frame Counter” node we will implement a
computer timestamp so that we can synchronize this data stream with the photometry
data stream. Here we will use a “Timestamp” node that only outputs the time of day,
total milliseconds timestamp. This is slightly different from the method we used to
timestamp the photometry data frame since we will be combining more than just the
frame number and the timestamp together.

Next we will create the image processing algorithm for tracking the state of a single
LED indicator. This algorithm will crop the incoming image to a single LED indicator,
convert the cropped image to grayscale, find the average pixel value of the grayscale
image, and output a boolean value indicating if the average pixel is greater than a
specified value. This concept works because the average pixel value will change
significantly when the LED indicator changes state. Begin construction by inserting a
“Group Workflow”, opening it by double clicking it, and inserting a “Workflow Input”
node. Connect it parallel to the frame counter and the computer timestamp.

59

Inside of the grouped workflow, begin the image processing algorithm with a “Crop
Polygon” node followed by a “Grayscale” node. This will generate a grayscale image,
cropped to a single LED indicator.

After the “Grayscale” node, add an “Average” node and output the “Val0” element from
it. This will average the pixel values and output the blue component. Since the
incoming image is grayscale, all color components are equal. Thus, outputting the
“Val0” element works to convert the data type from “OpenCV.Net.Scalar” to an integer.

60

We can complete the image processing algorithm with a “Greater Than” node. This will
output True when the average pixel value is greater than the specified value. Otherwise,
it will output False. Be sure to include a “Workflow Output” node at the end of this data
stream so that data can exit the grouped workflow.

Be sure to give the grouped workflow a unique name and a description.

61

This “LED Indicator” grouped workflow can be copy and pasted for each LED indicator.
Be sure that each still has a unique name. Next, the frame counter, the computer
timestamp, and all of the image processing grouped workflows need to be combined
into a single datastream using the “Zip” node. This “Zip” node can then be connected
to a “Csv Writer” node. This way a .csv file will be written with the first column as the
external camera’s frame number, the second column number as the computer
timestamp, and any subsequent columns as the LED Indicator states.

62

We can also add headers to the .csv file by inserting an “Expression Transform” node
immediately after the “Zip” node with the following script. Be sure that the “Include
Header” property of the “Csv Writer” node is set to “True”.

The image processing algorithms must be configured before every experiment. Any
movement of the external camera can cause the “Crop Polygon” nodes to no longer be
aligned to the LED indicators. Also, changes to lighting conditions can cause the cutoff
values for the “Greater Than” nodes to be incorrect. To configure the “Crop Polygon”
nodes, disable the photometry data stream and all of the writer nodes by selecting
them and pressing “CTRL + D”.

63

64

Then open all of the LED indicator grouped workflows so that we can have access to
all of the “Crop Polygon” and “Greater Than” nodes while the workflow is running. Start
the workflow and configure each “Crop Polygon” node by selecting the node and
clicking the “...” that appears in the “Regions” property. This will open a calibration
editor where you can click and drag a rectangular region across an individual LED
indicator.

With the “Crop Polygon” nodes configured, adjust the “Value” properties of the
“Greater Than” nodes such that it outputs “True” while the LED indicator is ON
and “False” while the LED indicator is OFF.

Once all of the “Crop Polygon” and “Greater Than” nodes are configured, stop
the workflow and enable all of the nodes by pressing “CTRL + A”, to select
everything, followed by “CTRL + Shift + D”, to enable everything selected.

65

Chapter 4: Data Acquisition

This chapter explores methods for controlling data acquisition of the FP3002 system
during fiber photometry experiments. The workflows presented here build in complexity
over the course of the chapter and all build off of the “Standard Photometry” workflow.
One major theme of this chapter is the difference between automatic and manual
control over data acquisition. We explore how to use “Timer” nodes to add a level of
automatic control and how to use “Key Down” nodes to add a level of manual control.

Delayed Start
The “Standard Photometry” workflow can be expanded to allow for a delayed start to
data acquisition. This example workflow makes use of the “Acquisition Control” node
and a software trigger to command the FP3002 system to start data acquisition a
period of time after the Bonsai workflow has been started. The software triggered used
for this workflow will depend on if the user wishes to automatically or manually trigger
the start of data acquisition. For an automated delayed start, we will use a “Boolean”
node followed by a “Delay (Reactive)” node. For a manual delayed start, we will use the
“KeyDown” node.

66

To create a workflow that implements a delayed start to data acquisition, begin with the
“Standard Photometry” workflow. In the “Standard Photometry” workflow, the
“FP3002” node was configured with the “Acquisition Mode” property set to “Start
Photometry”. This causes the FP3002 system to begin data acquisition as soon as
possible, after the Bonsai workflow is started. However, for a delayed start, the FP3002
system needs to wait to start data acquisition until it is commanded to start. For this
case, the “Acquisition Mode” property needs to be set to “Stop Photometry”.

Now that the “Standard Photometry” workflow is configured to wait to start data
acquisition until it is commanded, all that is left is to create the “Start Data Acquisition”
command from a software trigger and pass it to the “FP3002” node. This is where the
use of the “Acquisition Control” node comes into play. When the “Acquisition Control”
node is configured such that the “Mode” property is set to “Start” and the “Streams”
property is set to “Photometry”, the node will output the “Start Photometry” command
whenever a value is passed to it.

67

With this in mind, a software trigger can be implemented before the “Acquisition
Control” node such that the software trigger sends a value to the “Acquisition Control”
node after a delay. If data acquisition is desired to be started manually, the “KeyDown”
node is a good choice. The “KeyDown” node gives the option to filter by keystroke so
that only a single button on the keyboard can be used to trigger data acquisition. There
is also the option to “Suppress Repetitions”. This option prevents the “KeyDown” node
from sending a lot of the same messages in a row while holding down a key for too
long. In the example below, the “KeyDown” node will send a value every time the user
presses the “A” button, and will only send the value once if the “A” button is held down
for an extended period of time. Once the “A” button is pressed, the “Acquisition
Control” node will output the “Start Photometry” command.

68

If instead, the desired delay to data acquisition is to be a precise amount of time since
the workflow has started, a “Boolean” node followed by a “Delay (Reactive)” node as
the software trigger would be more appropriate. The “Delay (Reactive)” node delays the
notification of values by the specified time interval. Since the “Boolean” node produces
a value once at the start of the workflow, the “Acquisition Control” node will not
produce its first and only command until the amount of time specified in the “Delay
(Reactive)” node has passed since the workflow has started. In the example below, the
“Start Data Acquisition” command will be generated 10 seconds after the start of the
workflow

69

Once the desired software trigger is connected to the “Acquisition Control” node, the
“Acquisition Control” node must be connected to the input of the “FP3002” node to
complete the workflow. This will allow the “Start Photometry” command, created by
the “Acquisition Control” node, to be sent to the “FP3002” node, which will send the
command to the FP3002 system.

70

Hardware Control
In some experiments it is desired to control the data acquisition of the FP3002 system
using an external device. The FP3002 system possesses two digital input ports that
accept +5V digital signals. These ports can be configured such that a TTL signal can
dictate when data acquisition is occurring. Using the standard photometry workflow,
open the “FP3002 Setup” window by double clicking the “FP3002” node while the
workflow is stopped.

71

In the “Digital IOs” section, configure either the “Digital Input 0” or “Digital Input 1”
setting to be “Control Trigger”.

This will allow the +5V TTL signal on the specified port to control the data acquisition of
the FP3002 system. While the TTL signal is HIGH, the system will be acquiring data
frames and while the TTL signal is LOW, the system will not be acquiring data frames.

72

Manual Control
This section discusses two methods for full manual control over data acquisition. Both
cases utilize the “Acquisition Control” node for creating “Stop Photometry” and “Start
Photometry” commands to be sent to the “FP3002” node. In one case, we use
separate keys for the start and stop commands, and in the other case we use any key
to toggle between data acquisition states.

73

In both cases, begin with the “Standard Photometry” workflow and specify the
“Acquisition Mode” property of the “FP3002” node based on the desired initial
acquisition state. If the FP3002 system should be acquiring data immediately after the
workflow is started, select “Start Photometry”. Otherwise, if the FP3002 system should
wait until the first “Start Photometry” command is manually sent, select “Stop
Photometry”.

For the case in which separate keys will be used for the “Stop Photometry” and “Start
Photometry” commands, pair two “Acquisition Control” nodes with two “KeyDown”
nodes. Both “Acquisition Control” nodes should have the “Streams” property set to
“Photometry”, meanwhile, one should have a “Mode” property of “Start” and the other
should have a “Mode” property of “Stop”.

74

The “Filter” property of each “KeyDown” node should also be set so that only a
particular keystroke will trigger the specified command. In this example, the “A” key is
used to trigger the “Start Photometry” command, while the “B” key is used to trigger
the “Stop Photometry” command.

75

Currently, there are two data streams for producing commands to be sent to the
“FP3002” node, one producing the “Start Photometry” command when the “A” key is
pressed and the other producing the “Stop Photometry” command when the “B” key is
pressed. These two data streams need to be converted to a single data stream without
combining elements from both data streams into a different data type. For situations
like this, the “Merge” node is ideal for converting from two data streams into one data
stream. This node accepts data from multiple data streams that produce elements of
the same type and outputs the most recent element from any data stream.

Now that the commands controlling data acquisition are merged together into a single
data stream, the merged data stream can be connected to the input of the “FP3002”
node so that the commands can be sent to the FP3002 system once the workflow is
started.

76

For the case in which the state of data acquisition is to be toggled by any keystroke,
the logic for combining a software trigger with the “Acquisition Control” node must be
changed. Beginning with the “Acquisition Control” node, configure the “Mode”
Property to “Control”. This will change the “Acquisition Control” node to only accept
boolean values (True/False). In particular, when a “True” value is passed to the
“Acquisition Control” node, it will output the “Start Photometry” command. When a
“False” value is passed to the “Acquisition Control” node, it will output the “Stop
Photometry” command.

77

With the “Acquisition Control” node configured in this way, the software trigger logic
must be reconfigured to alternate between outputting True and False values. One way
to set up the software trigger logic is to connect a “KeyDown” node to a “Python
Transform” node. “Python Transform” nodes allow users to implement python scripts
within Bonsai workflows, and in this case we want to create a python counter that will
increment a value and output a True or False value depending on if that counter is even
or odd. This sort of logic will allow the user to easily toggle the software trigger with the
press of a key.

This python script initializes the ‘count’ variable to ‘-1’ when the Bonsai workflow is
started. Then every time a value is passed through this node, the count variable is
incremented. The script outputs which is True if the count is Even𝑐𝑜𝑢𝑛𝑡 % 2 == 0
and False if the count is Odd. This script can be configured to specify whether True or
False should be the first output value. To have the first output be True, leave the

line of code as is. To have the first output be False, change the𝑐𝑜𝑢𝑛𝑡 = − 1

78

to . Previously, we set the “Acquisition Mode” of the𝑐𝑜𝑢𝑛𝑡 = − 1 𝑐𝑜𝑢𝑛𝑡 = 0
“FP3002” node to specify whether the FP3002 system should begin data acquisition
on the start of the Bonsai workflow, or to wait until the first “Start Photometry”
command. The “Acquisition Mode” property and the initialization of the software trigger
should agree such that the first output of the software trigger is True when the FP3002
system is not acquiring at the start of the Bonsai workflow, and False when the system
is acquiring when the Bonsai workflow is started. This prevents a “Start Photometry”
command from being sent while the system is already acquiring and prevents the
“Stop Photometry” command from being sent while the system is already not
acquiring.

Once the software trigger is configured to alternate between True and False so that the
“Acquisition Control” node will alternate between “Start Photometry” and “Stop
Photometry” commands, this logic can be connected to the input of the “FP3002”
node of the “Standard Photometry” workflow. This will allow the user to manually
toggle between periods of data acquisition with any keystroke.

79

Basic Periodic Control
Previously we discussed how to manually control data acquisition in fiber photometry
experiments. Here we discuss a method to automatically control data acquisition in a
periodic fashion with a 50% duty cycle. This means that the system will alternate
between two states, acquiring and not acquiring, spending an equal amount of time in
each state. For cases where periodic control is desired, but equal time spent between
acquiring and not acquiring is not desired, please see the “Data Acquisition: Period
Control, Variable Duty Cycle”

To construct this workflow, begin with the “Standard Photometry” workflow, setting the
“Acquisition Mode” property of the “FP3002” node to the desired initial acquisition
state. If data acquisition should begin with the start of the Bonsai workflow, select
“Start Photometry”. Otherwise, if data acquisition should wait until the first start
command, select “Stop Photometry”.

80

The rest of the workflow consists of a software trigger section connected to the input
of an “Acquisition Control” node. Beginning with the “Acquisition Control” node,
configure the “Mode” Property to “Control”. This will change the “Acquisition Control”
node to only accept boolean values (True/False). In particular, when a “True” value is
passed to the “Acquisition Control” node, it will output the “Start Photometry”
command. Also, when a “False” value is passed to the “Acquisition Control” node, it
will output the “Stop Photometry” command.

With the “Acquisition Control” node configured in this way, the software trigger logic
must be configured to alternate between outputting True and False values over a
specified time interval. One way to construct the software trigger logic is to connect a
“Timer” node to a “Python Transform” node. The “Timer” node can be configured to
periodically output an incremented value after a specified time interval has elapsed.
Then the “Python Transform” node can accept the integer from the “Timer” node and
output True or False based on whether the value is even or odd. This setup will output
a periodic stream of boolean values with a 50% duty cycle as desired.

81

To properly configure the “Timer” node, set the “Period” property to be the duration of
time for data acquisition to occur each cycle. Since the duty cycle of this particular
workflow is 50%, this will also be the period of time that data is not being acquired
during each cycle. Then, set the “Due Time” property to be the same as the “Period”
property. This is because the “FP3002” node sends the command specified in its
“Acquisition Mode” property at the start of the workflow. So in order to prevent sending
multiple acquisition control commands at the start of the workflow, we need to provide
a delay before the first command from the “Acquisition Control” node is generated.

The script within the “Python Transform” node simply checks whether or not the value
is even or odd. The script does this by outputting , which is True if the𝑐𝑜𝑢𝑛𝑡 % 2 == 0
value is Even and False if the value is Odd. This script can be configured to specify
whether True or False should be the first output value. Since the first value that the
“Timer” node outputs is “0”, True will be the first value output by the “Python
Transform” node when checking for Even values: . However, if the first𝑐𝑜𝑢𝑛𝑡 % 2 == 0
value from the “Python Transform” node should be false, then check for Odd values:

.This should agree with the “Acquisition Mode” property of the𝑐𝑜𝑢𝑛𝑡 % 2 == 1
“FP3002” node such that the first command generated by the “Acquisition Control”
node is opposite as the command specified in the “Acquisition Mode” property. In
particular, if the initial acquisition state is desired to be ON then the “Acquisition Mode”
property should be set to “Start Photometry” and the python transform node should
check for Odd values.

82

With the software trigger and “Acquisition Control” node configured and connected,
the “Acquisition Control” node can now be connected to the input of the “FP3002”
node. When the workflow is run, the “Timer” node will increment its output value after a
specified amount of time has elapsed. Then the “Python Transform” will output a True
or False value depending on whether or not the value from the “Timer” node is even or
Odd. The boolean output from the “Python Transform” will travel to the “Acquisition
Control” node which will convert the boolean value to a “Start Photometry” or “Stop
Photometry” command that the “FP3002” node will be able to send to the FP3002
system.

83

Periodic Control, Variable Duty Cycle
In this section we generalize the concept of periodic control over data acquisition to
allow for a variable duty cycle. In the periodic control workflow presented below, the
times spent acquiring versus not acquiring are no longer dependent on each other. The
user has full control over the duration of data acquisition and the duration of no data
acquisition.

To construct this workflow, begin with the standard photometry workflow, setting the
“Acquisition Mode” property of the “FP3002” node to the desired initial acquisition
state. If data acquisition should begin with the start of the Bonsai workflow, select
“Start Photometry”. Otherwise, if data acquisition should wait until the first start
command, select “Stop Photometry”.

84

Similar to the previous workflows in this chapter, the rest of the workflow consists of a
software trigger connected to the input of an “Acquisition Control” node. Beginning
with the “Acquisition Control” node, configure the “Mode” Property to “Control”. This
will change the “Acquisition Control” node to only accept boolean values (True/False).
In particular, when a “True” value is passed to the “Acquisition Control” node, the node
will output the “Start Photometry” command. When a “False” value is passed to the
“Acquisition Control” node, the node will output the “Stop Photometry” command.

With the “Acquisition Control” node configured in this way, the software trigger logic
must be reconfigured to alternate between outputting True and False values with a
specified duty cycle. To begin construction of this software trigger, start with a “Timer”
node configured with a “Period” of 0.001 seconds. This will force the “Timer” node to
output a value as fast as possible.

85

The “Timer” node does not have the precision to output a value every 1ms so it is
advised to actually timestamp the values coming from this node using the computer’s
timestamp. To do this, connect a “Timestamp” node after the “Timer” node. Then
select the output of the “Timestamp” node to be “Time Of Day, Total Milliseconds” by
right clicking the “Timestamp” node and selecting “Output → Timestamp →
TimeOfDay → TotalMilliseconds”.

86

To highlight the importance of actually timestamping the output of the “Timer” node
that has a low “Period”, let us use a “Difference” node on the “Timer” and on the
“Timestamp.TimeOfDay.TotalMilliseconds” nodes.

When running the above code, the “Difference” node connected to the “Timer” will
show the theoretical amount of milliseconds between outputs of the “Timer”.
Meanwhile, the “Difference” node connected to the
“Timestamp.TimeOfDay.TotalMilliseconds” node will show the observed amount of
milliseconds between outputs of the “Timer”.

87

The left plot shows that theoretically, only one millisecond passed between outputs of
the “Timer” node, but the right plot shows the actual time between outputs is closer to
20ms. The actual rate at which values are output from the “Timer” configured with a
1ms period is dependent on many factors, so it is often best to timestamp these values
when working with small periods.

Transitioning back to the workflow at hand, remove the “Difference” nodes, we will not
actually need them to complete this workflow. The goal for this software trigger is to
alternate between outputting True and False values, where the user can specify how
long to stay in each state. With this in mind, we need a way to store the duration spent
acquiring versus not acquiring. This is easily done by inserting two “Int64” nodes into
the workflow, parallel to the timestamped timer data stream. The “Int64” nodes will
output the specified integer value once at the start of the Bonsai workflow.

88

With these three data streams, we have all the information we need to pass through a
python script to periodically output boolean values with the desired duty cycle.
However, to get this information into a “Python Transform” node, these three data
streams must be combined. In this case, connecting the three data streams to a
“Combine Latest” node is appropriate. This node will accept inputs from each data
stream and output a Tuple containing the latest values from each stream every time any
stream has produced a value. Since the “Int64” nodes only produce a value once, at
the start of the Bonsai workflow, the output of the “Combine Latest” node will only
produce a value when the timer’s data stream produces a value. This output will
contain the current time of day in milliseconds and the ON/OFF times specified in the
“Int64” nodes.

89

Now that we have one data stream containing all the information we need, we can
connect a “Python Transform” node after the “Combine Latest” node to process the
information, outputting the appropriate boolean value. In this python script, we will
keep track of each time a new acquisition cycle starts, find the amount of time spent in
the current cycle, and output a boolean value accordingly. This script will be
configurable to specify its initial output value.

90

91

Before continuing on with constructing the workflow, this is a good place to test the
logic works as intended. Set the values for the ON and OFF times by specifying the
values within the “Int64” nodes. In the script above, the ON time was “Item2” of the
Tuple coming from the “Combine Latest” node. This means that the top “Int64” is
responsible for the ON time value, while the bottom one is responsible for the OFF time
value. Our script also assumes that these durations are specified as milliseconds. In
the test below, the ON time is set to 800ms and the OFF time is set to 200ms. As a
note, for real-world fiber photometry experiments, periods of acquisition that are this
short are not suggested.

Once these values are set, run this software trigger section of the workflow by
disabling all other nodes in the workflow and clicking start. Open the visualizer for the
“Python Transform” node to check if our boolean signal appears correct.

92

Here, the “Python Transform” periodically outputs True values for 800ms and False
values for 200ms, as intended. However, this “Python Transform” outputs a value every
time the timer’s data stream produces a new value. We saw above that this occurs
every ~20ms. If this were connected to the “Acquisition Control” node, it would be
sending identical commands every ~20ms, which is not intended. The only information
we want to send to the “Acquisition Control” node is when this signal changes from
LOW to HIGH or HIGH to LOW. This is a case where the “Distinct Until Changed” node
is applicable. This node will only output a value when the input changes.

93

This software trigger logic is now ready, but there are some organizational changes
that can be implemented to provide an easier user experience. First, we can group
together all of these nodes into a single grouped workflow. This way the details of
these operations will not distract the user. Do this by highlighting all of the software
trigger logic, right clicking, and selecting “Group → GroupWorkflow”. This will
encapsulate all of the logic into a single node.

The properties panel of the “Group Workflow” node allows you to name it and provide
a description of the encapsulated process.

94

There are two properties within the software trigger logic that we want users to have
easy access to, the ON and OFF times. Open up the encapsulated workflow by double
clicking the node. You will see that a “Workflow Output” node has automatically been
added to the end of the data stream. This allows the values to exit the encapsulated
workflow. To make the ON and OFF times easily accessible, we want to externalize the
“Value” property of both “Int64” nodes. Do this by right clicking each node and
selecting “Externalize Property → Value”.

This will add “Value (ExternalizedMapping)” nodes to the inputs of the “Int64” nodes
and make these properties accessible from the properties panel of the grouped
workflow. Both of these “Value” nodes need to have unique “DisplayNames”. To name
them, select the node, then expand the “Value” section of the properties panel and set
the “Display Name”.

95

With these externalized properties added, the ON and OFF times can be specified from
the properties panel of the grouped workflow.

Now that the software trigger is complete and organized, its output can be connected
to an “Acquisition Control” node configured to control the photometry stream. Then,
the output of the “Acquisition Control” node can be connected to the “FP3002” node of
the standard photometry workflow.

96

Periodic Control, Delayed Start
This section discusses methods for adding automatic or manual delayed starts to the
periodic control workflows presented in the previous two sections of this chapter. With
minor changes to the “Basic Periodic Control” and “Periodic Control, Variable Duty
Cycle” workflows, we can enable these delayed start features.

Basic Periodic Control, Automated Delayed Start
In order to add an automatic delayed start to the Basic Periodic Control workflow ,
begin by configuring the “Basic Periodic Control” workflow to begin with data
acquisition OFF. Do this by specifying the “Acquisition Mode” property of the “FP3002”
node to be “Stop Photometry”.

97

Then, configure the “Python Transform” script to output True as its first value. Since the
“Timer” node will output “0” as its first value, the python script should return “

”.𝑣𝑎𝑙𝑢𝑒 % 2 == 0

This way, when the workflow is started, the “FP3002” node will command the FP3002
system to stop data acquisition, then when the “Timer” node produces its first value,
the “Start Photometry” command will be generated and sent through the “FP3002”
node to the FP3002 system.

98

Now, the user is free to specify the duration of the automatic delayed start using the
“Due Time” property of the “Timer”. In the example below, the workflow will wait 10
minutes to start basic periodic control of data acquisition. Then, during the periodic
control, it will alternate between acquiring for 30 minutes and not acquiring for 30
minutes.

Basic Periodic Control, Manual Delayed Start
This “Basic Periodic Control” workflow can also have a manual delay to periodic
control. First, configure the “Basic Periodic Control” workflow to begin with no data
acquisition. Do this by specifying the “Acquisition Mode” property of the “FP3002”
node to “Stop Photometry” and configuring the python script to output True as its first
value. Then verify that the “Due Time” property of the “Timer” node to zero and use a
“Combine Latest” node to combine the “Timer” node with a “Key Down” node. The
“Combine Latest” node will only output its first value after both the “Timer” and “Key
Down” data streams have produced a value.

99

Now, some minor changes to the “Python Transform” node need to be made.
Currently, the python script assumes that the input is an integer value, but now its
input is a Tuple. Also, the “Python Transform” outputs whether or not the value from the
“Timer” node is even or odd. However, with the delayed start, the first value from the
“Timer” that the python script sees could be even or odd depending on the duration of
the manual delay. To make this less arbitrary and to specify the initial output of the
“Python Transform” node, we need an internal counter in the python script.

100

This script’s main two features are that it has an internal counter to dictate the output
of the script. This allows the user to more easily specify the first output of the script.
This script also prevents the incrementation of the internal count when the “Key Down”
node produces a value. This way if the keystroke used to start the periodic control is
pressed again, it will not affect data acquisition. To clean up the workflow, it is useful to
specify the “Filter” property of the “KeyDown” node so that only one keystroke can be
used to trigger periodic data acquisition. Also, it is useful to add a “Distinct Until
Changed” node after the “Python Transform” node so that subsequent key presses will
not produce repeated commands acquisition control commands.

Periodic Control, Variable Duty Cycle, Automatic Delayed Start
To implement an automatic delay to the “Periodic Control, Variable Duty Cycle”
workflow, we will specify the “Due Time” property of the “Timer” node. To keep with
the organizational scheme that we developed during construction of that workflow, we
can externalize the “Due Time” Property of the “Timer” node so that it appears in the
grouped workflow’s properties panel. You can do this by double clicking the grouped
workflow to open it in a new tab, then right click the “Timer” node and select
“Externalize Property → Due Time”

101

Now you can specify the duration of the delay to periodic data acquisition within the
properties panel of the grouped workflow. In the example below, periodic data
acquisition will start after a 10minute delay. Once started it will alternate between
40minutes of data acquisition and 20minutes of no data acquisition.

Periodic Control, Variable Duty Cycle, Manual Delayed Start
To add a manual delay to this workflow, instead of specifying the “Due Time” property,
we will use a “Combine Latest” node to combine the “Timer” node and a “KeyDown”
node. This way the “PythonTransform” node will not receive its first value until the
specified key is pressed.

102

Now, we have two “Combine Latest” nodes in the same data stream leading up to the
“Python Transform” node. This adds a little complexity to the data types going into
python script. We can fix this data type mix-match either within the python script or
within the workflow. In this case, the easiest way to fix this discrepancy is to have the
“Combine Latest” node only output the first item in its Tuple (the value from the “Timer”
node). Do this by right clicking the “Combine Latest” node and select “Output →
Item1”.

103

This workflow already has a “Distinct Until Changed” node to prevent repeated outputs
and already has a python script resilient to extra key presses so no other changes need
to be made. It is a good idea to externalize the “Filter” property of the “KeyDown” node
so that it is accessible from the grouped workflow’s property panel.

104

Second Order Periodic Control
We have been using “periodic control” to describe cycling between states of data
acquisition and no data acquisition, where the “ON time” is the duration of the data
acquisition phase and the “OFF time” is the duration of the no data acquisition phase.
In this second order periodic control section we discuss another level of control for
data acquisition. In some experiments, implementation of periodic control is not
enough, sometimes we need to implement control over when “periodic control” occurs.
This concept of “Second Order Periodic Control” involves using a second software
trigger to trigger when to start and stop periodic control of data acquisition. Similar to
the software triggers of the periodic control workflow, this additional software trigger
can be constructed to automatically or manually trigger periodic data acquisition.

Before we construct manual and automatic second order periodic control workflows,
let’s detail the desired functionality of these workflows. For both workflows, we want to
construct a software trigger that will alternate between two states: no data acquisition
and periodic data acquisition. At the start of the no data acquisition state, the software
trigger should output a “False” value. Then during the periodic data acquisition state,
the software trigger should alternate between “True” and “False” values with
user-specified ON and OFF times. For an automatic second order control workflow, the
user should be able to specify the duration of the no data acquisition and periodic data
acquisition states. For a manual second order control workflow, the user should be
able to trigger a state change between no data acquisition and periodic data
acquisition states with a key press.

105

Similar to the previous data acquisition workflows, these second order periodic control
workflows can be separated into three sections: the software trigger, the acquisition
control node, and the standard photometry section. Our starting point in constructing
this workflow will be the “Periodic Control, Variable Duty Cycle” workflow. Begin by
renaming the grouped workflow containing the software trigger logic, here we will
name it “Second Order Periodic Acq Control”.

To change this first order periodic control workflow to a second order periodic control
workflow, all we need to do is reconfigure the software trigger logic.

Manual Second Order Periodic Control
In order to configure the software trigger logic for manual second order periodic
control, we will use a “Key Down” node to toggle between periods of periodic data
acquisition and no data acquisition. Open the grouped workflow containing the
software trigger logic. Insert a “Key Down” node connected to a “Python Transform”
node inside of this grouped workflow. We will use these two nodes to create a data
stream that toggles between True and False when the user presses a key.

106

The python script in this new “Python Transform” node will contain an internal counter
and output whether the key was pressed an Even or Odd number of times. We will use
the output of this “Python Transform” node to dictate whether the system is in a
periodic acquisition control state or a no data acquisition state. A True value will be
used to trigger periodic data acquisition, while a False value will be used to trigger a
stop to any data acquisition.

This “Python Transform” will have its first output as True so that the FP3002 system will
begin in the no data acquisition state at the start of the workflow then toggle to the
periodic data acquisition state on the first keystroke.

107

Be sure to externalize the “Filter” property of the “Key Down” node so that it is
accessible from the properties panel of the grouped workflow. Here we also edit the
display name of the externalized “Filter” property to indicate its function. Specify the
“Suppress Repetitions” property to “True” to prevent the “Key Down” node from
producing many values for a single prolonged key press. With the “Key Down” node
configured, the “Filter” property externalized, and the python script implemented, we
are ready to connect this to the “Combine Latest” node.

With some additional python logic in the “Python Transform” node immediately after
the “Combine Latest” node, we will finish constructing our software trigger. The
boolean value dictating whether the system should be in a periodic data acquisition
state or a no data acquisition state will be contained in the fourth element of the input
Tuple. Begin by reading in this value as a local variable, we will name it “periodicDAQ”.

108

Then, encompass the if, elif, else statement containing the periodic data acquisition
logic with an if, else statement such that the periodic data acquisition logic only runs
when the “periodicDAQ” variable is True. Otherwise, the script should only update the
“startTime” variable and return False.

With this additional python logic our software trigger is complete. The “Acquisition
Mode” property of the “FP3002” node should be set to “Stop Photometry”. This is
because the software trigger logic dictates that the system should be in the no data
acquisition state at the start of the Bonsai workflow.

109

In the example below, the system will begin in the no data acquisition state when the
workflow is started. Then, when the “A” key is pressed, it will enter the periodic data
acquisition state, with an ON time of 10 minutes and an OFF time of 30 minutes. The
system will continue automatically cycling between data acquisition and no data
acquisition with the user-specified duty cycle until the “A” key is pressed again to
toggle OFF the periodic data acquisition.

110

Automated Second Order Periodic Control
In order to configure the software trigger logic for automated second order periodic
control, we will include two additional “Int64” nodes to the input of the “Combine
Latest” node. These will contain the duration of the periodic data acquisition and no
periodic data acquisition states. Be sure to externalize the “Value” property for each of
these new “Int64” nodes and give them unique display names.

111

Now we have all the information we need entering the “Python Transform” node
through the “Combine Latest” node. Here we have the current time of day, in total
milliseconds, the ON/OFF durations of data acquisition during the periodic data
acquisition state, and the ON/OFF durations of the periodic data acquisition and no
data acquisition states. Begin with a fresh python script by deleting the current “Python
Transform” node and reinserting a new one.

Start the script by reading in each element of the incoming Tuple. Be sure to double
check the order in which the “Int64” nodes are connected.

112

For our script we will need to keep track of two start times: the start time of data
acquisition and the start time of periodic data acquisition. Declare two global variables
for storing these values. Initialize these to a negative value so that the script will be able
to determine if it is the first time it is being run during a workflow.

Before implementing our logic for periodic data acquisition, let’s handle the edge case
that occurs the first time this script is run. In this case, we want to update our global
start time variables to the current time. To do this, after the script reads in the input
Tuple, if either of the global start time variables are negative then update them to the
current time and return True.

This way, when the workflow is started, this python script will immediately update the
global start time variables and output True, indicating that data acquisition should
begin. That way, on the start of the workflow, the FP3002 system will be in the periodic
data acquisition state. Now we can begin implementing our logic for periodic data
acquisition. After our edge case test, calculate the amount of time the system has
spent in the current data acquisition ON/OFF cycle and in the current periodic data
acquisition ON/OFF cycle, being sure to account for a date change.

113

Next, add an if, elif, else statement to determine if the system should be in the periodic
data acquisition state, no data acquisition state, or at the end of the current periodic
data acquisition ON/OFF cycle.

Now we need to populate this if, elif, else statement. In the elif portion of the statement,
we have determined that the system should be in the no data acquisition state. In this
case, the script should only output a False value. Meanwhile, in the else portion of the
statement, the script needs to reset to a new periodic data acquisition ON/OFF cycle.
To do this, we need to update the global start time variables to the current time and
output True.

In the if portion of the if, elif, else statement, we need to include logic for alternating
between data acquisition ON/OFF states. This logic will be quite similar to our logic for
alternating between periodic data acquisition ON/OFF states. So we can add another
if, elif, else statement here to determine if the system should be in the data acquisition
state, no data acquisition state, or at the end of the current data acquisition ON/OFF
cycle.

114

Now we need to populate this new if, elif, else statement. In the if portion of the
statement we have determined that the system should be acquiring so the script
should simply output True. In the elif portion, data acquisition should stop so output
False. Finally, in the else portion, we need to reset the current data acquisition ON/OFF
cycle by updating only the “daqStartTime” global variable to the current time and
outputting True.

Our python script is now complete. When the workflow starts, the script will update the
global start time variables and output True to start data acquisition. The system will
remain in the periodic data acquisition for the specified duration, using the logic
contained within the statement to cycle between data𝑖𝑓 𝐷𝑇 < 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝐷𝑎𝑞𝑂𝑁𝑇𝑖𝑚𝑒:
acquisition ON/OFF states. Then after a specified amount of time, the system will enter
a state of no periodic data acquisition when data acquisition will remain off until the
next cycle of periodic data acquisition. The full script is shown below:

115

116

With the addition of the “Int64” nodes and the new python script, our software trigger
is complete. In the example below, data acquisition will begin with the start of the
workflow. Then for three hours, the system will alternate between acquiring for ten
minutes and not acquiring for thirty minutes. After the three hours of periodic data
acquisition, the system will stop any data acquisition for one hour. Finally, after an hour
of no data acquisition, the system will begin three hours of periodic data acquisition
again.

117

Chapter 5: Stimulation

This chapter explores methods for controlling stimulation of the FP3002 system during
fiber photometry experiments. The workflows presented here build in complexity over
the course of the chapter and all build off of the “Standard Photometry” workflow. One
major theme of this chapter is the difference between automatic and manual control
over stimulation. We explore how to use “Timer” nodes to add a level of automatic
control and how to use “Key Down” nodes to add a level of manual control.

Delayed Start
The “Standard Photometry” workflow can be expanded to allow for stimulation to be
triggered after a duration of time has passed since the workflow has been started. This
example workflow makes use of the “Stimulation” node and a software trigger to
command the FP3002 system to start stimulation. The software triggered used for this
workflow will depend on if the user wishes to automatically or manually trigger the start
of stimulation. For an automated delayed start, we will use a “Boolean” node followed
by a “Delay (Reactive)” node. For a manual delayed start, we will use the “KeyDown”
node. This workflow also allows the user to record the ON/OFF state of the laser,
timestamped using the system’s internal clock.

118

To create a workflow that implements a delayed start to stimulation, begin with the
“Standard Photometry” workflow. Calibrate the laser within the “FP3002 Setup”
window. For more information on how to calibrate and align the laser, see the “FP3002”
entry in the “Appendix I: Node Glossary” .

119

Now that the “Standard Photometry” workflow is configured, we must create the “Start
Stimulation” command from a software trigger and pass it to the “FP3002” node. This
is where the use of the “Stimulation” node comes into play. The “Stimulation” node has
three options for the “Command” property: “Stop”, “Start Finite”, and “Start
Continuous”. In this case, we want this node to command the FP3002 system to pulse
the laser a finite amount of times, so the “Start Finite” option should be selected. The
reason for not choosing the “Start Continuous” command is that this command will
ignore the “Pulse Count” parameter specified within the “FP3002 Setup” window and
command the system to pulse the laser until it the “Stop Stimulation” command is
sent.

The “Stimulation” node will send its specified command whenever it receives any input
value. With this in mind, a software trigger can be implemented before the
“Stimulation” node such that the software trigger sends a value to the “Stimulation”
node after a delay.

120

Manual Trigger:
If stimulation is desired to be started manually, the “Key Down” node is a good choice
for a source node. The “Key Down” node gives the option to filter by keystroke so that
only a single button on the keyboard can be used to trigger data acquisition. There is
also the option to “Suppress Repetitions”. This option prevents the “KeyDown” node
from sending repeated messages while holding down a key for too long. In the example
below, the “Key Down” node will send a value every time the user presses the “A”
button, and will only send the value once if the “A” button is held down for an extended
period of time. Once the “A” button is pressed, the “Stimulation” node will output the
command to start a finite laser pulse train.

121

Automated Trigger:
If instead, the desired delay to stimulation is to be a precise amount of time since the
workflow has started, a “Boolean” node followed by a “Delay (Reactive)” node as the
software trigger would be more appropriate. The “Delay (Reactive)” node delays the
notification of values by the specified time interval. Since the “Boolean” node produces
a value once at the start of the workflow, the “Stimulation” node will not produce its
first and only command until the amount of time specified in the “Delay (Reactive)”
node has passed since the workflow has started. In the example below, the
“Stimulation” node will produce its first and only command, to start a finite laser pulse
train, ten seconds after the workflow begins.

122

Once the desired software trigger is connected to the “Stimulation” node, the
“Stimulation” node must be connected to the input of the “FP3002” node to complete
the workflow. This will allow the command, created by the “Stimulation” node, to be
sent through the “FP3002” node to the FP3002 system

The above workflows successfully triggers a delayed start to stimulation during a
photometry experiment. However, there is an important last step for constructing any
stimulation workflow. The “FP3002” node knows precisely when the laser changes
state. We can gain access to that information by using a “Digital IOs” node. The
“Digital IOs” node is similar to the “Photometry Data” where it processes the
information coming from the “FP3002” node. However, instead of processing data
related to photometry, it processes information coming from the digital input and
output ports on the FP3002 system. If the “Output 1 Routing” parameter in the
“FP3002 Setup” window is set to “Both”, then the internal TTL signal controlling the
state of the laser will be sent to both the laser and the digital output 1 port. Due to this
functionality, the state of the laser will be represented by the TTL signal on the digital
output 1 port, that we can record using the “Digital IOs” node. To do this, connect the
“Digital IOs” node after the “FP3002” node, in parallel with the “Photometry Data”
node. Then set the “Type” property of the “Digital IOs” node to “Output 1”. Then set the
“Include Timestamp” property to “True”. This will cause the recorded laser state signal
to be timestamped using the system’s internal clock, making it already aligned to the

123

recorded photometry data. What is left to do is connect the “Digital IOs” node to a
“Csv Writer” node.

124

Hardware Control
In some experiments it is desired to control the stimulation of the FP3002 system using
an external device. The FP3002 system possesses two digital input ports that accept
+5V digital signals. These ports can be configured such that a TTL signal can dictate
when stimulation is occurring. Using the standard photometry workflow, open the
“FP3002 Setup” window by double clicking the “FP3002” node while the workflow is
stopped.

125

In the “Digital IOs” section, configure either the “Digital Input 0” or “Digital Input 1”
setting to be “Start Stimulation Finite” or “Start Stimulation Continuous”.

This will allow the +5V TTL signal on the specified port to control the stimulation of the
FP3002 system. While the TTL signal is HIGH, the system will be stimulating and while
the TTL signal is LOW, the system will not be stimulating. The pulse train parameters can
be configured within the “Power (Laser)” and “Stimulation Pulse” sections. The key
difference between the “Start Stimulation Finite” and the “Start Stimulation Continuous”
settings is that the “Start Stimulation Finite” will trigger a finite pulse train, only triggering
the number of pulses specified within the “Pulse Count” property. Meanwhile, the “Start
Stimulation Continuous” setting will conduct a pulse train for the whole duration of the
HIGH +5V TTL signal. You will notice that the “Start Stimulation Interleaved” setting is an
option. However, this option is currently disabled in the FP3002 system’s firmware until
future updates.

Whenever conducting stimulation in a photometry experiment, be sure to record the
state of the laser. To do this, specify the “Output 1 Routing” property within the “FP3002
Setup” window to be “Both” so that the internal TTL signal controlling the laser will be
sent to both the internal laser and the digital output 1 port.

126

Now the laser state can be recorded using the “Digital IOs” node connected after the
“FP3002” node, in parallel with the “Photometry Data” node. Be sure to configure the
“Digital IOs” node to have the “Include Timestamp” property set to “True” and the “Type”
property set to “Output 1”.

This “Digital IOs” node can be connected directly to a “Csv Writer” node to record the
timestamped laser state. This data set will already be aligned to the photometry data set
since it also uses the system’s internal clock to timestamp the state changes of the laser.

127

Manual Control
This section discusses two ways to construct a Bonsai workflow that will give the user
full manual control over stimulation. Both cases utilize the “Stimulation” node for
creating commands for starting and stopping stimulation. These commands will be
sent through the “FP3002” node to the FP3002 system. In one case, we use separate
keys for the start and stop commands, and in the other case we use any key to toggle
between stimulation states.

In both cases, begin with the “Standard Photometry” workflow and add the “Digital
IOs” node in parallel to the “Photometry Data” node. This way the workflow will be able
to record both the photometry data and the laser state. Be sure to set the “Type” and
“Include Timestamp” properties of the “Digital IOs” node to “Output 1” and “True”
respectively. The “Digital IOs” node should also be connected to a “Csv Writer” in
order to save the laser state signal to a .csv file.

128

Case #1: Separate Keys
For the case in which separate keys will be used for the “Stop Stimulation” and “Start
Stimulation” commands, pair two “Stimulation” nodes with two “Key Down” nodes.
One “Stimulation” node should have a “Command” property of “Stop” and the other
should have a “Command” property of “Start Finite” or “Start Continuous”. Be sure to
set the “Filter” properties of the “Key Down” nodes so that they are distinct from each
other. In the example below, the “Key Down” node connected to the “Stimulation.Stop”
node has a “Filter” property set to “B”, while the other “Key Down” node has a “Filter”
property of “A”. This way the “A” key will trigger the start of stimulation while the “B”
key will trigger the end of stimulation.

129

Currently, there are two data streams for producing commands to be sent to the
“FP3002” node. These two data streams need to be converted to a single data stream
without combining elements from both data streams into a different data type. For
situations like this, the “Merge” node is ideal for converting from two data streams into
one data stream. This node accepts elements from data streams that produce data of
the same type and outputs the most recent element from either data stream.

Now that the commands controlling stimulation are merged together into a single data
stream, the merged data stream can be connected to the input of the “FP3002” node
so that the commands can be sent to the FP3002 system after the workflow has been
started.

130

This workflow has all of the logic needed to conduct a fiber photometry experiment
with manual control over laser stimulation. However, it is important to add some
organization to allow for easier understanding of the workflow after some time has
passed. In this workflow, we have five nodes used to control the sending of stimulation
commands as well as two important parameters for the user to know before the
experiment (the key filters). We can group these stimulation control nodes into a single
grouped workflow, while still keeping the “Filter” properties of the “Key Down” nodes
easily accessible from the top level of the workflow. To do this, select all of the nodes
prior to the “FP3002” node, right click and select “Group → GroupWorkflow”.

131

This will encapsulate the stimulation control nodes into a single grouped workflow that
the user can name and provide a description for.

In order to make the “Filter” properties easily accessible by the user, open the grouped
workflow by double clicking it. Then right click each “Key Down” node and select
“Externalize Property → Filter”. This will create an “Externalized Mapping” node for
each “Key Down” node.

132

These need to have unique names, so be sure to expand the “Filter” property of the
“Externalized Mapping” nodes and specify unique and informative “Display Name”
properties for both nodes. In the example, the filters are named “Start Stim Key” and
“Stop Stim Key”.

With the “Filter” properties externalized, they are now easily accessible from the
properties panel of the grouped workflow. Although this particular workflow was
somewhat basic, a little time spent organizing the workflow can go a long way. This is
especially true for when workflows start to become more complex like in the later
portions of this “Stimulation” chapter.

133

Case #2: Togglable
For the case in which the stimulation state is to be toggled by any keystroke, the
stimulation control logic must be altered. Begin with a “Key Down” node connected to
a “Python Transform” node. We will then write a script within the “Python Transform”
node that will contain an internal counter keeping track of the number of times the “Key
Down” node has been triggered. Then we will output whether that internal counter is
even or odd. This way the output from the python script will alternate between True and
False every time a key is pressed.

This python script initializes the ‘count’ variable to ‘-1’ when the Bonsai workflow is
started. Then every time a value is passed through the node, the count variable is
incremented. The script outputs which is True if the count is Even𝑐𝑜𝑢𝑛𝑡 % 2 == 0
and False if the count is Odd.

134

Once the software trigger is configured to alternate between True and False we need to
have the True values send the “Start Stimulation” command to the “FP3002” node and
we need the False values to send the “Stop Stimulation” command. In order to
accomplish this, we need to separate the boolean values coming from the python
script into two data streams, one containing the True values the other containing the
False values. An easy way to separate into multiple data streams based on a condition
is to use the “Condition” node. Connect two “Condition” nodes to the “Python
Transform” node in parallel to each other.

The “Condition” node filters the elements of an observable sequence according to the
condition specified by the encapsulated workflow. This means that the values
appearing at the input of the “Condition” node will only appear at its output when the
logic inside of the node returns a True value. Since the values coming from the “Python
Transform” node are boolean values, no additional logic needs to be added within the
“Condition” node to filter out all of the False values from the data stream. However, in
order to filter out all of the True values, a “Bitwise Not” node needs to be added to the
“Condition” node. This “Bitwise Not” node will convert all of the True values to False
and vice versa within the “Condition” node, causing the node to only output the values
from its input when they are False values. Configure one of the “Condition” nodes by
double clicking it and inserting a “Bitwise Not” node between the “Source 1” and
“Workflow Output” nodes.

135

The “Condition” nodes also give the option to set the name and description of the
node. It is useful to utilize these options to keep the logic organized.

Now that we have the boolean values separated into two data streams, connect
“Stimulation” nodes to each of the “Condition” nodes. Configure the “Stimulation”
nodes such that the one receiving True values outputs a “Start Stimulation” command,
and the other outputs the “Stop Stimulation” command.

136

We now have to convert these two data streams outputting stimulation commands into
a single data stream that outputs the most recent stimulation command. To do this,
connect both of the “Stimulation” nodes to a single “Merge” node. This “Merge” node
will output the most recent command produced by the two “Stimulation” nodes. To
complete the workflow logic, connect the “Merge” node to the input of the “FP3002”
node.

This workflow now contains all of the necessary logic for conducting a fiber
photometry experiment with stimulation toggled by a key press. However, there are
seven nodes used solely for the purpose of producing the stimulation commands. This
can cause confusion for the user and can be easily organized to improve reusability. To
organize this work, let’s group together all of the stimulation command logic into a
single grouped workflow. Select all of the nodes prior to the “FP3002” node, then right
click and select “Group → GroupWorkflow”.

137

This will encapsulate the stimulation control nodes into a single grouped workflow that
the user can name and provide a description for.

138

In case the user wants to use a specific key press to toggle stimulation, we can easily
make the “Filter” property of the “Key Down” node accessible from the top level of the
workflow. To do this, open the grouped workflow by double clicking it, right click the
“Key Down” node, and select “Externalize Property → Filter”. This will create an
“Externalized Mapping” node for the “Key Down” node.

You can specify the display name of the “Filter” property by expanding the “Filter”
property of the “Externalized Mapping” node and specifying a unique and informative
“Display Name” property. In the example, the filter property is named “Toggle Stim
Key”.

139

With the “Filter” property of the “KeyDown” node externalized, it is now easily
accessible from the properties panel of the grouped workflow.

140

Basic Periodic Control
In this section, we discuss a method for periodic control of stimulation with a 50% duty
cycle. This means that the system will alternate the stimulation state, spending an
equal amount of time in each state. For cases where periodic control is desired, but a
50% duty cycle is not desired, please see the “Period Control, Variable Duty Cycle”
section of this chapter.

To construct this workflow, begin with the “Standard Photometry” workflow and add
the “Digital IOs” node in parallel to the “Photometry Data” node. This way the workflow
will be able to record both the photometry data and the laser state. Be sure to set the
“Type” and “Include Timestamp” properties of the “Digital IOs” node to “Output 1” and
“True” respectively. The “Digital IOs” node should also be connected to a “Csv Writer”
in order to actually save the laser state signal to a .csv file.

141

The rest of the workflow consists of logic for controlling the production of the
stimulation commands. One way to construct the software trigger logic is to connect a
“Timer” node to a “Python Transform” node. The “Timer” node can be configured to
output an incremented value after a specified time interval has elapsed. Then the
“Python Transform” node can accept the integer from the “Timer” node and output
True or False based on whether the value is Even or Odd. This setup will output a
periodic stream of boolean values with a 50% duty cycle as desired.

To properly configure the “Timer” node, set the “DueTime” to zero, unless a delay to
the first command is desired. Then specify the “Period” property to be the duration of
time for stimulation to occur each cycle. Since the duty cycle of this particular workflow
is 50%, this will also be the period of time that stimulation does not occur during each
cycle.

142

The script within the “Python Transform” node simply checks whether or not the value
is Even or Odd. The script does this by outputting , which is True if𝑐𝑜𝑢𝑛𝑡 % 2 == 0
the value is Even and False if the value is Odd. Since the first value that the “Timer”
node outputs is “0”, True will be the first value output by the “Python Transform” node.

Once the software trigger is configured to alternate between True and False we need to
have the True values send the “Start Stimulation” command to the “FP3002” node and
we need the False values to send the “Stop Stimulation” command. In order to
accomplish this, we need to separate the boolean values coming from the python
script into two data streams, one containing the True values the other containing the
False values. An easy way to separate into multiple data streams based on a condition
is to use the “Condition” node. Connect two “Condition” nodes to the “Python
Transform” node in parallel to each

The “Condition” node filters the elements of an observable sequence according to the
condition specified by the encapsulated workflow. This means that the values
appearing at the input of the “Condition” node will only appear at its output when the
logic inside of the node returns a True value. Since the values coming from the “Python
Transform” node are boolean values, no additional logic needs to be added within the
“Condition” node to filter out all of the False values from the data stream. However, in
order to filter out all of the True values, a “Bitwise Not” node needs to be added to the
“Condition” node. This “Bitwise Not” node will convert all of the True values to False
and vice versa within the “Condition” node, causing the node to only output the values
from its input when they are False values. Configure one of the “Condition” nodes by
double clicking it and inserting a “Bitwise Not” node between the “Source 1” and
“Workflow Output” nodes.

143

The “Condition” nodes also give the option to set the name and description of the
node. It is useful to utilize these options to keep the logic organized.

Now that we have the boolean values separated into two data streams, connect
“Stimulation” nodes to each of the “Condition” nodes. Configure the “Stimulation”
nodes such that the one receiving True values outputs a “Start Stimulation” command,
and the other outputs the “Stop Stimulation” command.

144

We now have to convert these two data streams outputting stimulation commands into
a single data stream that outputs the most recent stimulation command. To do this,
connect both of the “Stimulation” nodes to a single “Merge” node. This “Merge” node
will output the most recent command produced by the two “Stimulation” nodes and
can be connected directly to the “FP3002” node.

This workflow now contains all of the necessary logic for conducting a fiber
photometry experiment with periodic stimulation. However, there are seven nodes used
solely for the purpose of producing the stimulation commands. This can cause
confusion for the user and can be easily organized to improve reusability. To organize
this work, let’s group together all of the stimulation command logic into a single
grouped workflow. Select all of the nodes prior to the “FP3002” node, then right click
and select “Group → GroupWorkflow”.

145

This will encapsulate the stimulation control nodes into a single grouped workflow that
the user can name and provide a description for.

146

This now appears more organized, but the duration of stimulation needs to be easily
accessible by the user. To do this, open the grouped workflow by double clicking it,
right click the “Timer” node and select “Externalize Property → Period”. This will create
an “Externalized Mapping” node for the “Timer” node.

You can specify the display name of the “Period” property by expanding the “Period”
property of the “Externalized Mapping” node and specifying a unique and informative
“Display Name” property. In the example, the due time property is named “Stim
Duration”.

147

With the “Period” property of the “Timer” node externalized, it is now easily accessible
from the properties panel of the grouped workflow.

148

Periodic Control, Variable Duty Cycle
The “Stimulation: Basic Periodic Control” workflow is a particular implementation of the
periodic control concept where the duty cycle is 50%. This concept can be generalized
to allow for any duty cycle. In this variable duty cycle, period control workflow, the user
has full control over the duration of stimulation and the duration of no stimulation.

To construct this workflow, begin with the “Standard Photometry” workflow and add
the “Digital IOs” node in parallel to the “Photometry Data” node. This way the workflow
will be able to record both the photometry data and the laser state signal. Be sure to
set the “Type” and “Include Timestamp” properties of the “Digital IOs” node to “Output
1” and “True” respectively. The “Digital IOs” node should also be connected to a
“CsvWriter” in order to actually save the laser state signal to a .csv file.

149

Similar to the previous Stimulation workflows, the rest of the workflow consists of logic
for producing stimulation commands. Beginning with the software trigger logic, we
must configure it to alternate between outputting True and False values with a specified
duty cycle. Start with a “Timer” node configured with a “Period” of 0.001 seconds. This
will force the “Timer” node to output a value as fast as possible.

The “Timer” node does not have the precision to output a value every 1ms so it is
advised to actually timestamp the values coming from this node using the computer’s
timestamp. To do this, connect a “Timestamp” node after the “Timer” node. Then
select the output of the “Timestamp” node to be “Time Of Day, Total Milliseconds” by
right clicking the “Timestamp” node and selecting “Output → Timestamp →
TimeOfDay → TotalMilliseconds”.

150

The goal for this software trigger is to alternate between outputting True and False
values, where the user can specify how long to stay in each state. With this in mind, we
need a way to store the duration spent stimulating versus not stimulating. This is easily
done by inserting two “Int64” nodes into the workflow, parallel to the timestamped
timer data stream. The “Int64” nodes will output the specified integer value once at the
start of the Bonsai workflow.

With these three data streams, we have all the information we need to pass through a
python script to periodically output boolean values with the desired duty cycle.
However, to get this information into a “Python Transform” node, these three data
streams must be combined. In this particular case, connecting the three data streams
to a “Combine Latest” node is appropriate. This node will accept inputs from each data
stream and output a Tuple containing the values from each stream every time any
stream has produced a value. Since the “Int64” nodes only produce a value once, at
the start of the Bonsai workflow, the output of the “Combine Latest” node will only
produce a value when the timer’s data stream produces a value. This output will
contain the current time of day in milliseconds and the ON/OFF times specified in the
“Int64” nodes.

151

Now that we have one data stream containing all the information we need, we can
connect a “Python Transform” node after the “Combine Latest” node to process the
information and output the appropriate boolean value. In this python script, we will
keep track of each time a new stimulation cycle starts, find the amount of time spent in
the current cycle, and output a boolean value accordingly. The below script is
hardcoded to have its initial output to be a True value.

152

153

Before continuing on with constructing the workflow, this is a good place to test the
logic works as intended. Set the values for the ON and OFF times by specifying the
values within the “Int64” nodes. In the script above, the ON time was “Item2” of the
Tuple coming from the “Combine Latest” node. This means that the top “Int64” is
responsible for the ON time value, while the bottom one is responsible for the OFF time
value. Our script also assumes that these durations are specified as milliseconds. In
the test below, the ON time was set to 800ms and the OFF time was set to 200ms.

Once these values are set, run this software trigger section of the workflow and open
the visualizer for the “Python Transform” node to check if our boolean signal appears
correct.

154

The above signal appears correct, the “Python Transform” successfully outputs True
values for 800ms then False values for 200ms and repeats itself. However, this “Python
Transform” outputs a value every time the timer’s data stream has a new value. If this
were connected to our “Stimulation” node logic, it would be sending commands every
~20ms. Sending stimulation commands at this rate can interfere with the pulse train
logic set within the “FP3002 Setup” window. The only information we want to send to
the “Stimulation” nodes is when this signal changes from LOW to HIGH or HIGH to
LOW. This is a case where the “Distinct Until Changed” node is applicable. This node
will only output a value when the input changes.

155

Once the software trigger is configured to alternate between True and False we need to
have the True values send the “Start Stimulation” command to the “FP3002” node and
we need the False values to send the “Stop Stimulation” command. Here is where we
implement the “Condition” nodes to split the incoming data stream into two. Please
see the previous stimulation control workflows for more information about this concept.

Now that we have the boolean values separated into two data streams, connect
“Stimulation” nodes to each of the “Condition” nodes. Configure the “Stimulation”
nodes such that the one receiving True values outputs a “Start Stimulation” command,
and the other outputs the “Stop Stimulation” command.

156

We now have to convert these two data streams outputting stimulation commands into
a single data stream that outputs the most recent stimulation command. To do this,
connect both of the “Stimulation” nodes to a single “Merge” node. This “Merge” node
will output the most recent command produced by the two “Stimulation” nodes and
can be connected directly to the “FP3002” node.

This stimulation command production logic is now ready, but there are some
organizational changes that can be implemented to provide an easier user experience.
First, we can group together all of these nodes into a single grouped workflow. This
way the details of these operations will not distract the user. Do this by highlighting all
of the software trigger logic, right clicking, and selecting “Group → GroupWorkflow”.
This will encapsulate all of the logic into a single node.

157

The properties panel of the “Group Workflow” node allows you to name it and provide
a description of the encapsulated process.

There are two properties within the software trigger logic that we want users to have
easy access to, the ON and OFF times. Open up the encapsulated workflow by double
clicking the node. You will see that a “Workflow Output” node has automatically been
added to the end of the data stream. This allows the values to exit the encapsulated
workflow. To make the ON and OFF times easily accessible, we want to externalize the
“Value” property of both “Int64” nodes. Do this by right clicking each node and
selecting “Externalize Property → Value”.

158

This will add “Value (ExternalizedMapping)” nodes to the inputs of the “Int64” nodes.
Both of these “Value” nodes need to have unique “DisplayNames”. To name them,
select the node, then expand the “Value” section of the properties panel and set the
“Display Name”.

With these externalized properties added, the ON and OFF times can be specified from
the properties panel of the grouped workflow.

159

Now that the software trigger is complete and organized, its output can be connected
to the “FP3002” node of the “Standard Photometry” workflow with laser state
recording.

160

Periodic Control, Delayed Start
The previous workflows discussing methods for periodic control over stimulation can
be expanded to include a delayed start to periodic control. This technique allows for
the user to manually or automatically trigger periodic stimulation after a duration of
time has passed since the Bonsai workflow has been started. With minor changes to
the “Basic Periodic Control” and “Periodic Control, Variable Duty Cycle” workflows, we
can enable this delayed start feature.

Basic Periodic Control, Automated Delayed Start
To add an automatic delayed start to the Basic Periodic Control workflow, simply
specify the “Due Time” property of the “Timer” node. This will cause the “Timer” node
to wait for that specified amount of time until it outputs its first value. We can make this
“Due Time” easily accessible from the top level of the workflow by opening the
grouped workflow and externalizing the “Due Time” property of the “Timer” node.

161

Set the “Display Name” of the externalized “Due Time” property to something unique
and informative.

Now the delay duration can easily be set from the properties panel of the grouped
workflow containing all of the stimulation command production logic. In the example
below, the first “Start Stimulation” command will occur 10 minutes after the Bonsai
workflow was started and then the stimulation state will alternate every 5 minutes.

162

Basic Periodic Control, Manual Delayed Start
This “Basic Periodic Control” workflow can also have a manual delay to periodic
control. To do this, verify that the “Due Time” is set to zero, then use a “Combine
Latest” node to combine the “Timer” node with a “KeyDown” node. The “Combine
Latest” node will only output its first value after both the “Timer” and “KeyDown” data
streams have produced a value.

Now, some minor changes to the “Python Transform” node need to be made.
Currently, the python script assumes that the input is an integer value, but now its
input is a Tuple. Also, the “Python Transform” outputs whether or not the value from the
“Timer” node is even or odd. However, with the delayed start, the first value from the
“Timer” that the python script sees could be even or odd depending on how long the
manual delay is. To make this less arbitrary and to specify the initial output of the
“Python Transform” node to be True, we need an internal counter in the python script.

163

This script’s main two features are that it has an internal counter to dictate the output
of the script. This allows the user to more easily specify the first output of the script.
This script also prevents the incrementation of the internal count when the “Key Down”
node produces a value. This way if the keystroke used to start the periodic control is
pressed again, it will not toggle the stimulation state. To clean up the workflow, it is
useful to specify and externalize the “Filter” property of the “Key Down” node so that
only one keystroke can be used to trigger stimulation.

164

Also, it is useful to add a “Distinct Until Changed” node after the “Python Transform”
node so that subsequent key presses will not produce repeated commands acquisition
control commands.

Once the externalized “Filter” property has a unique and informative “Display Name”,
the filter can be set from the properties panel of the grouped workflow. In the example
below, periodic stimulation will start once the user presses the “A” key and once
started, it will alternate states every 5 minutes.

165

Periodic Control, Variable Duty Cycle, Automatic Delayed Start
To implement an automatic delay to the variable duty cycle periodic control workflow,
we will specify the “Due Time” property of the “Timer” node. To keep with the
organizational scheme that we developed during construction of that workflow, we can
externalize the “Due Time” Property of the “Timer” node so that it appears in the
grouped workflow’s properties panel. You can do this by double clicking the grouped
workflow to open it in a new tab, then right click the “Timer” node and select
“Externalize Property → Due Time”

Once the externalized “DueTime” property has a unique and informative
“DisplayName”, you can specify the duration of the delay to periodic stimulation within
the properties panel of the grouped workflow. In the example below, periodic
stimulation will start after a 10 minute delay. Once started it will alternate between 5
minutes of stimulation and 20 minutes of no stimulation.

166

Periodic Control, Variable Duty Cycle, Manual Delayed Start
To add a manual delay to this workflow, instead of specifying the “Due Time” property,
we will use a “Combine Latest” node to combine the “Timer” node and a “KeyDown”
node. This way the “PythonTransform” node will not receive its first value until the
specified key is pressed.

Now, we have two “Combine Latest” nodes in the same data stream leading up to the
“Python Transform” node. This adds a little complexity to the data types going into
python script. We can fix this data type mix-match either within the python script or
within the workflow. In this case, the easiest way to fix this discrepancy is to have the
“Combine Latest” node only output the first item in its Tuple (the value from the “Timer”
node). Do this by right clicking the “Combine Latest” node and select “Output →
Item1”.

167

This workflow already has a “Distinct Until Changed” node to prevent repeated outputs
and already has a python script resilient to extra key presses so no other changes need
to be made. It is a good idea to externalize the “Filter” property of the “Key Down”
node so that it is accessible from the grouped workflow’s property panel.

Once the externalized “Filter” property has a unique and informative “Display Name”,
the key used to trigger periodic stimulation can be set within the grouped workflow’s
property panel. In the example below, periodic stimulation will start when the “A” key is
pressed, then it will alternate between 5 minutes of stimulation and 20 minutes of no
stimulation.

168

Second Order Periodic Control
We have been using “periodic control” to describe cycling between starting and
stopping stimulation, where the “ON time” is the duration of the laser pulse train and
the “OFF time” is the duration of the no stimulation phase. In this second order
periodic control section we discuss another level of control for stimulation. In some
experiments, implementation of periodic control is not enough, sometimes we need to
implement control over when “periodic control” occurs. This concept of “Second Order
Periodic Control” involves using a second software trigger to trigger when to start and
stop periodic control of stimulation. Similar to the software triggers of the periodic
control workflow, this additional software trigger can be constructed to automatically or
manually trigger periodic stimulation.

Before we construct manual and automatic second order periodic control workflows,
let’s detail the desired functionality of these workflows. For both workflows, we want to
construct a software trigger that will alternate between two states: no stimulation and
periodic stimulation. At the start of the no stimulation state, the software trigger should
output a “False” value. Then during the periodic stimulation state, the software trigger
should alternate between “True” and “False” values with user-specified ON and OFF
times. For an automatic second order control workflow, the user should be able to
specify the duration of the laser pulse trains and the duration of no stimulation. For a
manual second order control workflow, the user should be able to trigger a state
change between no stimulation and periodic stimulation states with a key press.

169

Similar to the previous data acquisition workflows, these second order periodic control
workflows can be separated into three sections: the software trigger, the generation of
stimulation commands, and the standard photometry section with the addition of the
“Digital IOs” node to record the laser state. Our starting point in constructing this
workflow will be the “Periodic Control, Variable Duty Cycle” workflow. Begin by
renaming the grouped workflow containing the software trigger and the generation of
stimulation commands logic, here we will name it “Second Order Periodic Stim
Control”.

To change this first order periodic control workflow to a second order periodic control
workflow, all we need to do is reconfigure the software trigger logic.

170

Manual Second Order Periodic Control
In order to configure the software trigger logic for manual second order periodic
control, we will use a “Key Down” node to toggle between periods of periodic
stimulation and no stimulation. Open the “Second Order Periodic Stim Control”
grouped workflow. Insert a “Key Down” node connected to a “Python Transform” node
inside of this grouped workflow. We will use these two nodes to create a data stream
that toggles between True and False when the user presses a key.

The python script in this new “Python Transform” node will contain an internal counter
and output whether the key was pressed an Even or Odd number of times. We will use
the output of this “Python Transform” node to dictate whether the system is in a
periodic stimulation control state or a no stimulation state. A True value will be used to
trigger periodic stimulation, while a False value will be used to trigger a stop to any
stimulation.

171

This “Python Transform” will have its first output as True so that the FP3002 system will
begin in the no stimulation state at the start of the workflow then toggle to the periodic
stimulation state on the first keystroke.

Be sure to externalize the “Filter” property of the “Key Down” node so that it is
accessible from the properties panel of the grouped workflow. Here we also edit the
display name of the externalized “Filter” property to indicate its function. Specify the
“Suppress Repetitions” property to “True” to prevent the “Key Down” node from
producing many values for a single prolonged key press. With the “Key Down” node
configured, the “Filter” property externalized, and the python script implemented, we
are ready to connect this to the “Combine Latest” node.

With some additional python logic in the “Python Transform” node immediately after
the “Combine Latest” node, we will finish constructing our software trigger. The
boolean value dictating whether the system should be in a periodic stimulation state or
a no stimulation state will be contained in the fourth element of the input Tuple. Begin
by reading in this value as a local variable, we will name it “periodicStim”.

172

Then, encompass the if, elif, else statement containing the periodic stimulation logic
with an if, else statement such that the periodic stimulation logic only runs when the
“periodicStim” variable is True. Otherwise, the script should only update the
“startTime” variable and return False.

With this additional python logic our software trigger is complete. In the example
below, the system will begin in the no stimulation state when the workflow is started.
Then, when the “A” key is pressed, it will enter the periodic stimulation state, with a
laser pulse train duration of 5 minutes followed by 20 minutes of no stimulation. The
system will continue automatically cycling between stimulation and no stimulation with
the user-specified duty cycle until the “A” key is pressed again to toggle OFF the
periodic stimulation.

173

Automated Second Order Periodic Control
In order to configure the software trigger logic for automated second order periodic
control, we will include two additional “Int64” nodes to the input of the “Combine
Latest” node. These will contain the duration of the periodic stimulation and no
periodic stimulation states. Be sure to externalize the “Value” property for each of these
new “Int64” nodes and give them unique display names.

174

Now we have all the information we need entering the “Python Transform” node
through the “Combine Latest” node. Here we have the current time of day, in total
milliseconds, the ON/OFF durations of stimulation during the periodic stimulation state,
and the ON/OFF durations of the periodic stimulation and no periodic stimulation
states. Begin with a fresh python script by deleting the current “Python Transform”
node and reinserting a new one.

Start the script by reading in each element of the incoming Tuple. Be sure to double
check the order in which the “Int64” nodes are connected.

175

For our script we will need to keep track of two start times: the start time of a pulse
train and the start time of periodic stimulation. Declare two global variables for storing
these values. Initialize these to a negative value so that the script will be able to
determine if it is the first time it is being run during a workflow.

Before implementing our logic for periodic stimulation, let’s handle the edge case that
occurs the first time this script is run. In this case, we want to update our global start
time variables to the current time. To do this, after the script reads in the input Tuple, if
either of the global start time variables are negative then update them to the current
time and return False.

This way, when the workflow is started, this python script will immediately update the
global start time variables and output False, indicating that stimulation should not
begin. That way, on the start of the workflow, the FP3002 system will be in a no
stimulation state. Now we can begin implementing our logic for periodic stimulation.
After our edge case test, calculate the amount of time the system has spent in the
current stimulation ON/OFF cycle and in the current periodic stimulation ON/OFF cycle,
being sure to account for a date change.

176

Next, add an if, elif, else statement to determine if the system should be in the periodic
stimulation state, the no periodic stimulation state, or at the end of the current periodic
stimulation ON/OFF cycle. Here we will configure the logic such that the system begins
in a periodic stimulation ON state, but it will start its stimulation ON/OFF cycles in the
OFF state. We find this logic works best in most experiments to allow for periodic
stimulation to begin at the start of the experiment while not stimulating immediately
after the workflow has been started.

Now we need to populate this if, elif, else statement. In the elif portion of the statement,
we have determined that the system should be in the no periodic stimulation state. In
this case, the script should only output a False value. Meanwhile, in the else portion of
the statement, the script needs to reset to a new periodic stimulation ON/OFF cycle. To
do this, we need to update the global start time variables to the current time and output
False.

177

In the if portion of the if, elif, else statement, we need to include logic for alternating
between stimulation ON/OFF states. This logic will be quite similar to our logic for
alternating between periodic stimulation ON/OFF states. So we can add another if, elif,
else statement here to determine if the system should be in the stimulation OFF state,
stimulation ON state, or at the end of the current stimulation ON/OFF cycle.

Now we need to populate this new if, elif, else statement. In the if portion of the
statement we have determined that the system should not be stimulating so the script
should simply output False. In the elif portion, stimulation should start, so output True.
Finally, in the else portion, we need to reset the current stimulation ON/OFF cycle by
updating only the “stimStartTime” global variable to the current time and outputting
False.

Our python script is now complete. When the workflow starts, the script will update the
global start time variables and output False to ensure no stimulation is occuring. The
system will remain in the periodic stimulation state for the specified duration, using the
logic contained within the statement to cycle between𝑖𝑓 𝐷𝑇 < 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑆𝑡𝑖𝑚𝑂𝑁𝑇𝑖𝑚𝑒:
stimulation ON/OFF states. Then after a specified amount of time, the system will enter

178

a state of no periodic stimulation when stimulation will remain OFF until the next cycle
of periodic stimulation. The full script is shown below:

179

With the addition of the “Int64” nodes and the new python script, our software trigger
is complete. In the example below, stimulation will begin 20 minutes after the start of
the workflow. Then for three hours, the system will alternate between stimulating for 5
minutes and not stimulating for 20 minutes. After the three hours of periodic
stimulation, the system will stop any stimulation for one hour. Finally, after an hour of
no stimulation, the system will begin three hours of periodic stimulation again,
beginning with the 20 minutes of no stimulation.

180

Chapter 6: Machine Vision

This chapter builds on the concept of utilizing machine vision techniques within fiber
photometry experiments. We begin with an introduction on how to synchronize a
behavioral camera with the standard photometry data stream. Then we discuss the
implementation of image processing techniques for animal tracking in different
environments. The machine vision techniques presented here consist of image
segmentation to isolate an animal in an enclosure followed by binary region analysis to
find the centroid of the animal. More advanced techniques can be implemented, but are
outside the scope of this book. We will focus on utilizing built-in Bonsai nodes for our
machine vision algorithms and showcasing how they can interface with the standard
photometry workflow.

Once we establish the ability to conduct animal tracking in multi-chamber enclosures,
we transition to the concept of “Closed-Loop” experiments. We use this term to describe
fiber photometry experiments that are influenced by the actions of animal being
observed. In this chapter, we describe how to use an animal tracking algorithm in order
to control the data acquisition and/or the stimulation of the FP3002 system. We
conclude this chapter with a section on common real-time analysis algorithms for
processing the data generated by image processing algorithms.

181

Synchronized Behavioral Camera
For experiments that require post-hoc behavioral analysis, it is possible to construct
Bonsai workflows with external behavioral cameras synchronized with the photometry
data. This particular workflow will save four files: the standard photometry dataset
(.csv), the photometry frame numbers timestamped using the computer’s timestamp
(.csv), the behavioral frame numbers timestamped using the computer’s timestamp
(.csv), and the video file containing the camera frames (.avi).

182

This workflow consists of two parallel data streams. One deals with processing and
recording the photometry data, while the other processes and records the information
from the external behavioral camera. In order to construct the photometry data stream,
begin with the “Standard Photometry” workflow.

This will record the photometry data, timestamped using the internal clock of the
FP3002 system. The data set produced by the “Standard Photometry” workflow needs
to be synchronized with the behavioral camera’s datasets. To prepare for synchronizing
the two parallel data streams, we need to timestamp every photometry data frame
using a clock that both data streams have access to. In this case, we will use the
computer’s clock to timestamp every photometry frame and behavioral frame. Insert a
“Timestamp” node after the “Photometry Data” node, in parallel with the “Photometry
Writer” and “Visualize ROI” nodes.

183

This “Timestamp” node will allow the computer to timestamp every frame count
element of every photometry data frame. We need to configure the output of the
“Timestamp” node to specifically output only the frame count and the computer’s
timestamp. Do this by right clicking the “Timestamp” node and selecting “Output →
Value → FrameCounter”. Then right click the “Timestamp” node and select “Output →
Timestamp → TimeOfDay → TotalMilliseconds”.

This will split the output of the “Timestamp” node into two data streams, one
containing the current frame count of the photometry data, the other containing the
computer’s timestamp of the current photometry data frame. Since we want to
combine these two data streams back into one data stream such that they produce
values at the same time, we can use the “Zip” node to combine them back together.
This “Zip” node will combine the frame count and the computer’s timestamp into a
Tuple that can be easily written to a .csv file using a “Csv Writer” node.

184

This expansion of the “Standard Photometry” workflow now saves two .csv files. One
will contain the standard photometry data set, the other will contain the frame number
timestamped using the computer’s clock. This makes the photometry data readily
alignable to parallel data streams by using the same computer timestamping method
for all other parallel data streams. Some minor cleanup can be done to make the
workflow more readable. Simply select all of computer timestamp nodes, from the
“Timestamp” to the “Zip” node, right click and select “Group → GroupWorkflow”.

185

This will hide all of the computer timestamp logic inside of a single grouped workflow
that can be named and described from the properties panel.

Now that the photometry data stream is constructed and organized, we can begin
constructing the behavioral camera’s data stream. There are three commonly used
source nodes for connecting to external cameras and producing frames from them. For
Spinnaker cameras use the “Spinnaker Capture” node. For DirectShow based capture
devices use the “Video Capture Device”. Finally for most webcams, the “Camera
Capture” node is usable. All of the workflows contained within the “Machine Vision”
section will work the exact same way whether using the “Video Capture Device” or the
“Camera Capture” nodes. However, the “Spinnaker Capture” node works slightly
differently. The output of the “Spinnaker Capture” node is of type
“SpinnakerDataFrame” while the other two nodes output elements of type “IplImage”.
However, the “SpinnakerDataFrame” consists of an “IplImage” and “ChunkData” so the
machine vision techniques described in this and the following sections can still be used
with the “Spinnaker Capture” node if the “IplImage” is selected from the
“SpinnakerDataFrame”.

186

Create an external behavioral camera data stream by connecting the desired source
node to a “Video Writer” node.

Some configuration is available for the capture nodes and the “Video Writer” node. All
three capture nodes have the option to specify the camera’s index. For the “Camera
Capture” and “Video Capture Device” nodes, the internal camera on the “FP3002”
system will not be recognized, so if only one behavioral camera is connected to the
computer, it will appear on index 0. However, the “Spinnaker Capture” node will
recognize the internal camera on the FP3002 system, so some care needs to be taken
so that the “Spinnaker Capture” and “FP3002” nodes do not try to both access the
same camera. The “FP3002” node registers the internal camera when applying a
firmware update so we need to only verify that the “Spinnaker Camera” is not trying to
access the internal camera. You can do this by specifying the “Index” or
“SerialNumber” properties of the “Spinnaker Capture” node.

187

The “Video Writer” node has a variety of properties that are configurable. Similar to the
“Csv Writer”, be sure to specify the “File Name”, “Overwrite”, and “Suffix” properties.
Be sure to include the file extension in the “File Name” and that it matches the
“FourCC”. By default “FMP4” will be used as the “FourCC” in order to save an .avi file.
Next, set the “Frame Rate” property to the frame rate of the behavioral camera. This will
allow the playback of the video to be at the same rate that the camera frames were
acquired.

With the basic behavioral camera data stream configured, we need to synchronize this
data stream with the photometry data stream by timestamping the frame count of the
behavioral camera frame using the computer’s clock. Most behavioral cameras do not
have an internal frame counter so our first task in synchronization is to create a frame
counter for the behavioral camera. Do this by connecting a “Python Transform” node to
the capture node in parallel with the “Video Writer” node.

188

Edit the python script by double clicking the “Python Transform” node. Here we will
insert a basic python counter script that will keep track of the number of behavioral
camera frames that have passed through the “Python Transform” node.

Now we can timestamp the frame number of the behavioral camera using the
computer’s timestamp and save it to a .csv file. We will do this using the same method
we used for the photometry data stream.

189

Again, we can group together all of the computer timestamp nodes into a single
grouped workflow that can be named and described from the properties panel.

Now, the behavioral camera and photometry data streams can be implemented in the
same Bonsai workflow and can be aligned using the computer’s clock.

190

One Chamber Animal Tracking
Previously we discussed how to synchronize a behavioral camera in a parallel data
stream within Bonsai. This technique can be expanded to provide real-time processing
of the behavioral camera’s frame. In particular, this section will discuss tracking the
position of an animal in a one chamber enclosure.

191

Begin construction of this workflow with the “Machine Vision: Synchronized Behavioral
Camera” workflow discussed previously. Remove the “Python Transform” and
timestamping logic from the behavioral camera’s data stream, this section of the
workflow is where we will implement our image processing logic.

192

Our image processing logic needs to save four columns of data into a .csv file. We will
configure our logic to save the frame number in column one, the computer’s timestamp
in column two, and the XY position in columns three and four. In parallel to the “Video
Writer” node, connect a “Python Transform” node to the image source node. This will
contain our frame counter script from the “Machine Vision: Synchronized Behavioral
Camera” workflow.

193

Be sure to name and describe the “Python Transform” node from its properties panel.
This becomes important when constructing more complex workflows.

194

In parallel to the frame counter node, connect a “Timestamp” node to the behavioral
camera’s source node, outputting the “Time Of Day, Total Milliseconds” value. Instead
of timestamping the behavioral camera frames in series, like in the previous workflow,
we are adding a timestamp in parallel. This will make combining our image processing
data and saving to a .csv file easier.

195

It is also useful to group the timestamp nodes into a single grouped workflow that is
named and described. To do this, select both of the timestamp nodes that we just
added, right click and select “Group → GroupWorkflow”.

196

Now we need to create the logic for finding the centroid of an animal in a single
chamber enclosure. We will put all of this logic inside a grouped workflow in order to
keep everything organized. Begin by adding a “Group Workflow” from the toolbox into
the workflow. Open the grouped workflow by double clicking it. The first node that we
need to add to this grouped workflow is a “Workflow Input” node so that we can
accept the behavioral camera frame into this grouped workflow.

With this source node inside of the grouped workflow, we can now navigate back to
the top-level of the workflow and connect the capture node to the grouped workflow.

197

Returning to our grouped workflow, the first set of logic we want to implement in our
“Find Centroid” algorithm will work to crop the image coming from the behavioral
camera to the bounds of a single chamber enclosure. To do this connect a “Crop
Polygon” node to the source node of the grouped workflow. This node will require
reconfiguration every time the behavioral camera is moved, and should be checked
before every experiment. Since there are several nodes in this workflow that require
configuration, we will discuss methods for configuration after we have constructed all
of the needed logic for this workflow.

Next we need to apply an image segmentation technique to isolate the animal in the
image. One way to do this is to convert the image to grayscale then threshold the
grayscale image. Insert a “Grayscale” node followed by a “Threshold” node after the
“Crop Polygon” node. The “Grayscale” node will convert a BGR color image to
grayscale. The “Threshold” node will accept that grayscale image, isolate the animal in
the image, and output a binary image.

198

Now that we have applied image segmentation to isolate the animal, we can begin on
our binary region analysis. This part of the algorithm begins with finding the contours of
the animal, then we extract binary region properties from those contours and isolate
the largest binary region (i.e. the animal in the enclosure). We will do this by
implementing the following series of nodes after the threshold: “Find Contours”, “Binary
Region Analysis”, and “Largest Binary Region”.

The bulk of this algorithm is complete, all we have to do is output the desired
information. We can output the centroid of the largest binary region by right clicking the
“Largest Binary Region” node and selecting “Output → Centroid”. Once all of our
image processing nodes have been configured properly, the largest binary region will
be the animal and this centroid property will be the XY position of the animal, where the
X value is in pixels from the left edge of the cropped image and the Y value is in pixels
from the top edge of the cropped image.

Our image processing algorithm is now complete. In order to output the centroid value
from the grouped workflow, insert a “Workflow Output” node after the “Centroid” node.

199

We can also add some organization by naming and describing the grouped workflow.
In the example we name the grouped workflow “Find Centroid” and briefly describe the
image processing algorithm we implemented.

200

We have three data streams for our image processing algorithm: the frame counter,
computer timestamp, and the XY position of the animal. In order to save all of these
data streams into a single .csv file, we need to combine them. In this case, the “Zip”
node is the preferred method of combining the parallel data streams since they all
produce values at the same rate. We can then connect the “Zip” node to a “Csv Writer”
to actually write our data to a file.

It is useful to group together all of our image processing nodes into a single grouped
workflow that we can name and describe.

201

Configuration:
The nodes contained within our “Find Centroid” algorithm require configuration and
should be reconfigured every experiment. We will configure these nodes while the
workflow is running, so it is useful to temporarily disable all of the nodes contained
within the photometry data stream as well as all of the writers for the behavioral camera
data stream. The easiest way to do this is to select all of the nodes to be disabled and
to press the “CTRL + D” hotkey to disable them. This way we can run the workflow
while we configure the image processing nodes without saving any data or accessing
the FP3002 system.

202

Open the “Find Centroid” grouped workflow contained within the “Image Processing”
grouped workflow so we have access to all of the nodes that we need to configure.
Then start the workflow.

First, we will configure the “Crop Polygon” node such that the image is cropped to the
single chamber. While the workflow is running, click the “Crop Polygon” node, click
inside of the “Regions” property text box and select the “...” button.

203

This will open the video feed coming into the “Crop Polygon” node and allow you to
draw a region of interest encapsulating the chamber. For rectangular chambers, left
click and drag a rectangle along the wall of the chamber. Once the rectangle is drawn,
you can move each point individually by right clicking inside of the rectangle, close to
one of the points and dragging to a new position. The rectangle needs to be selected,
appearing green, to be reshaped. If it is not selected, press “Tab” to select it. You can
also delete selected rectangles by pressing “Del”. Be sure that only one rectangle is
drawn and if there are extra, press tab to select the undesired rectangles and delete
them. For a non-rectangular chamber, you can hold “Shift” while left clicking and
dragging a region of interest. This will generate an elliptical region with many points
that can be reshaped to match the shape of the enclosure.

Dr Polter's lab - Institute for Neuroscience - The George Washington University

The next node that needs configuring is the “Threshold” node. First set the “Max
Value” to the maximum possible pixel value. For most cases this will be 255, however
when working with Mono16 images this value will be 65,535. Next, set the “Threshold
Type” property to “Binary” or “BinaryInv”, depending if the animal is brighter or darker
than its environment. This property will cause the image to be black and white where
pixel values higher than the “Threshold Value” will be white in “Binary” mode and black
in “BinaryInv” mode. Finally, we must configure the “Threshold Value” property such

204

that the animal is the largest white region in the image. While the workflow is running,
open up the visualizer for the “Threshold” node by double clicking it, and adjust the
“Threshold Value” until the animal is white and the rest of the enclosure is black.

Dr Polter's lab - Institute for Neuroscience - The George Washington University

A useful feature of the visualizers for nodes in the “Bonsai.Vision” package is that when
you right click the image in the visualizer, it will display the cursor position and the pixel
values. You can use this feature to help configure the “Threshold” node by opening the
“Grayscale” node’s visualizer and finding the approximate pixel values of the animal in
the enclosure.

205

With the image processing logic constructed, organized, and configured, this workflow
is ready to use within a fiber photometry experiment. Be sure to enable all of the nodes
by highlighting them and pressing “CTRL + Shift + D”. The photometry data stream will
save two data sets: the standard photometry data set and the frame numbers with
computer timestamps for alignment purposes. The behavior camera data stream will
also save two data sets: the raw image data as an .avi file and a .csv file containing the
frame number, computer timestamp, and XY position of the animal for every behavioral
camera frame.

206

Three Chamber Animal Tracking
This section will expand the one chamber animal tracking workflow to allow for tracking
an animal in a three chamber enclosure. Here we will save all of the same data as the
previous workflow, except with an additional three columns in the behavior camera’s
.csv file to contain which chamber the animal is in.

In order to construct this workflow, we will begin with the one chamber animal tracking
workflow and edit the image processing logic to account for three chambers. Inside of
the “Image Processing” grouped workflow, we will keep the “Frame Counter” python
script and the “Computer Timestamp” logic the exact same. However, we will change
the “Find Centroid” grouped workflow such that the image segmentation part of the
algorithm will be conducted before the grouped workflow. This means we will crop the
image to the enclosure and threshold it before the image enters the “Find Centroid”
grouped work. This is done so that this step in the image processing does not have to
be repeated for each chamber analysis, but instead can be processed once and sent to

207

the “Find Centroid” and chamber analyses. We can insert the image segmentation
logic immediately after the “Source1” node such that it feeds the “Frame Counter”,
“Computer Timestamp”, and “Find Centroid” nodes. Open the “Find Centroid” grouped
workflow and remove the image segmentation logic. This includes the “Crop Polygon”,
“Grayscale”, and “Threshold” nodes.

We will reimplement similar logic immediately after the “Source” node of the “Image
Processing” grouped workflow. Instead of thresholding a grayscale image, let’s
threshold a BGR image. This will allow you to have three dimensions to threshold the
image instead of just one in the grayscale case. To do this, insert the “Crop Polygon”
node followed by the “Range Threshold” node immediately after the “Source” node of
the “Image Processing” grouped workflow.

208

These image segmentation nodes will require configuration. We will cover some useful
tricks for configuring these two nodes once all of our logic is set up. In particular, this
section will cover cropping the image to non-rectangular enclosures and a way to
visualize the BGR pixel values during thresholding.

Next we will need to construct logic for determining whether or not the animal is
located within a particular chamber of a multi-chamber enclosure. We will contain the
logic for each chamber in separate grouped workflows. These chamber grouped
workflows will accept the cropped, thresholded image and output to the “Zip” node.
Insert a “Group Workflow” node and name it “Chamber 1”.

Inside of the “Chamber 1” grouped workflow, start by inserting a “Workflow Input”
node followed by a “Workflow Output” node.

209

Now we can connect the “Range Threshold” node to the “Chamber 1” grouped
workflow’s input and connect the output of the “Chamber 1” grouped workflow to the
“Zip” node.

The image coming into the “Chamber 1” grouped workflow is already cropped to the
full enclosure and thresholded. Within the “Chamber 1” node we need to crop the
image again, this time to a particular chamber of the enclosure. Insert the “Crop
Polygon” node immediately after the “Source” node of the “Chamber 1” grouped
workflow.

210

Since the image is already thresholded at this point of the workflow, after configuration,
the image coming out of the “Crop Polygon” node should be mostly black. When the
animal enters the chamber, the animal should appear white. This means that the
average pixel value of the chamber when the animal is not in the chamber is
approximately zero, and this average will greatly increase when the animal enters the
chamber. This means we can use pixel averaging to distinguish whether or not the
animal is located within this particular chamber. To implement pixel averaging logic,
insert the “Average” node (from the Bonsai.Dsp package) and output the “Val0”
element.

Currently, the above logic will output the average pixel value of the thresholded image,
cropped to a particular chamber. We need this to output a “1” when the average pixel
value is above a certain threshold and “0” when the average pixel value is below a
certain threshold. The “Greater Than” node can be used for this purpose; insert it
immediately after the “Val0” node.

211

Our chamber analysis logic is now complete for “Chamber 1”. This exact same logic
will be used for every other chamber in the enclosure. The only difference will be
contained within the “Crop Polygon” node, configuring it to a different chamber.
Duplicate the “Chamber 1” grouped workflow for each chamber of the enclosure and
rename the grouped workflows to have unique names. Be sure to connect them in
parallel to the “Chamber 1” grouped workflow.

212

Configuration:
This workflow possesses four “Crop Polygon” nodes, one “Range Threshold” node,
and three “Greater Than” nodes that must be configured before every experiment.
Begin this process by selecting all of the nodes in the photometry data stream as well
as all of the writer nodes in the behavioral camera’s data stream. Then click “CTRL +
D” to disable them. This way we can run the workflow during configuration, without
trying to access the FP3002 system or writing to storage. Then open the “Image
Processing” grouped workflow and the “Chamber 1” through “Chamber 3” grouped
workflows. This way we will have access to all of the nodes that need to be configured
while the workflow is running. Start the workflow and begin configuration with the
“Crop Polygon” and “Range Threshold” nodes in the “Image Processing” grouped
workflow. Click the “Crop Polygon” node and select the “...” found in the “Regions”
property. This will open a window for you to draw a region of interest. Left click and
drag to draw a region of interest of the whole enclosure. You can move each point of
the drawn rectangle by right clicking and dragging near an existing point inside of the
shape. You can also add more points to the shape by double left clicking inside of the
shape while it is selected. If the shape is not selected, press “Tab” to select it. With this
window you can draw an outline of any 2D enclosure.

Dr Polter's lab - Institute for Neuroscience - The George Washington University

213

Once the “Crop Polygon” node is used to crop the image to the full enclosure, double
click the “Range Threshold” node to open its visualizer. Then adjust the upper and
lower limits of the threshold until the animal in the enclosure appears white and the
enclosure appears black.

Dr Polter's lab - Institute for Neuroscience - The George Washington University

Then stop the workflow and disable the “Range Threshold” node and the “Find
Centroid” grouped workflow. Restart the workflow and configure the “Crop Polygon”
nodes found within the “Chamber 1” through “Chamber 3” grouped workflows. This
time crop the image to a different chamber for each “Crop Polygon” node.

Dr Polter's lab - Institute for Neuroscience - The George Washington University

214

Stop the workflow again and enable the “Range Threshold” node and the “Find
Centroid” grouped workflow. Restart the workflow and double click the “Greater Than”
nodes to open their visualizers. Allow the animal to enter each chamber and adjust the
“Value” property of each “Greater Than” node such that the node outputs False when
the animal is not present and outputs True when the animal is present.

215

Chamber Dependent Data Acquisition
In the preceding sections, we have kept the photometry data and machine vision data
streams parallel to each other so that they do not affect each other. However, in these
last machine vision sections we will use the information that we acquire from our image
processing algorithm to affect our photometry data stream. In particular, in this section
we will cover controlling photometry data acquisition based on where the animal is
located in a multi-chamber enclosure. This type of workflow logic is what we consider
to be “Closed-Loop”. Over this section and the next, we will explore this concept of a
fiber photometry experiment being influenced by the animal’s behavior. Here we will
combine the concepts developed in the previous machine vision sections with the logic
we developed in the data acquisition sections.

216

To begin constructing this workflow for chamber dependent data acquisition, begin
with the “Three Chamber Animal Tracking” workflow. We will use the data coming from
the chamber analysis grouped workflows to configure a software trigger that will
control when data acquisition occurs. The first step is to add some organization to
more easily access the data coming out of the “Image Processing” grouped workflow.
If you right click that grouped workflow and look at its outputs, you will see that it
outputs a Tuple containing “Item1” through “Item6”.

217

Without specifying the names of these items, it can be difficult to work with particular
items of this Tuple and can lead to costly errors in the workflow. In order to specify the
names of each of these items, we can use an “Expression Transform” inserted
immediately after the “Zip” node inside of the “Image Processing” grouped workflow.

Open the editor for the “Expression Transform” by double clicking the node. Here we
can create a dynamic class similar to a Tuple, where each element of the dynamic class
has a user-specified name. In other words, you will be able to access each item using
an informative name. Below is the syntax for renaming items one through six, creating
a dynamic class similar to a tuple.

218

After implementing the above script within the “Expression Transform”, you can see the
effect of this script by rechecking the output of the “Image Processing” node. Instead
of each element appearing as “Item1” through “Item6”, we can actually see a
descriptive name for each element being output.

Now, we want to configure the acquisition control logic based on which chamber the
animal is located. In this example, we will be using a three chamber enclosure where
the chambers go from left to right, labeled one through three. We will place the animal
in the center chamber, label “Chamber 2”, and we only want to acquire photometry
data while the animal is in the outer chambers, labeled “Chamber 1” and “Chamber 3”.
With this desired functionality, we will want our software trigger to change to “True”
when the animal enters chambers one or three and to change to “False” when the
animal enters chamber two. This can be accomplished by connecting the output of the
“Image Processing” node to a “Python Transform” node in parallel with the “Csv Writer”
node.

219

Inside the python script, we want to output the logical OR value of the “Chamber 1”
and “Chamber 3” elements. This way, the “Python Transform” node will output True
while the animal is in chambers one or three and False while the animal is in chamber
two. Since we specified the names of items one through six, we can more easily
access the values of the incoming data within this script using “value.Chamber1” and
“value.Chamber3”.

This script will output a value every behavioral camera frame, however, we only want to
send acquisition control commands to the “FP3002” node when this value changes. Be
sure to include a “Distinct Until Changed” node after this “Python Transform” node.

220

Now, we can create acquisition control commands using the “Acquisition Control”
node after the “Distinct Until Changed” node. The “Acquisition Control” node should be
configured to have the “Mode” and “Streams” properties set to “Control” and
“Photometry”.

Our acquisition control logic is now ready to connect to our photometry data stream.

221

This workflow could use some more organization by grouping together the nodes used
to create and control the flow of photometry data. In this example, we group all of the
nodes from the “Python Transform” node to the “Photometry Data” node and name the
grouped workflow “FP Acquisition Control”.

Before running an experiment with this workflow, be sure to configure the image
processing grouped workflow as outlined in the “Three Chamber Animal Tracking”
section.

222

Chamber Dependent Stimulation
This section will expand upon the previous section such that the animal will trigger
stimulation when entering a particular chamber. We will keep our acquisition control
logic such that data acquisition will only occur while the animal is in chambers one and
two. We will add stimulation logic such that stimulation will be triggered when the
animal enters chamber one.

To construct this workflow, begin with the workflow created in the “Chamber
Dependent Data Acquisition” section. Begin by renaming the grouped workflow
containing the nodes used for creating and controlling the photometry data stream. In
the previous example, this was named “FP Acquisition Control”. Since this will now
also contain the stimulation control logic, we will rename this to “FP with Acq and Stim
Control”.

223

Next, open the “FP with Acq and Stim Control” grouped workflow and group together
the acquisition control logic, i.e. the “Python Transform” node through the “Acquisition
Control” node. This will work to keep our acquisition and stim control logic separated.

We will now connect our stimulation control logic to the output of the “Source1” node
in parallel with the “Acquisition Control” grouped workflow. Begin by connecting a
“Member Selector” node to the source node. Open the editor for this node, click the
“Chamber1” member and select it by clicking the greater than symbol. Press “OK”
when complete and you have successfully selected the “Chamber1” item coming from
the source node.

224

For every behavioral camera frame, this “Chamber1” node will output a “True” value
while the animal is in chamber one and “False” otherwise. We only want to send a
stimulation command when this value changes so be sure to include a “Distinct Until
Changed” node immediately after.

From the “Distinct Until Changed” node, connect two “Condition” nodes in parallel to
deinterleave the boolean values into two data streams. One “Condition” node requires
no changes to filter out the “False” values, we will name this one “Start”. The other
“Condition” node requires a “Bitwise Not” node inserted between the “Source1” node
and the “Workflow Output” node. We will name this “Condition” node “Stop” as it will
filter out the “True” values.

225

A “Stimulation” node needs to be connected to both of the “Condition” nodes.
Configure the “Stimulation” node connected to the “Start” node to have a start
stimulation command. Meanwhile, configure the “Stimulation” node connected to the
“Stop” node to have a stop stimulation command.

Next, merge together the two data streams containing stimulation commands.

226

Then, merge together the acquisition control commands and the stimulation
commands using a “Merge” node immediately before the “FP3002” node.

Finally, add some organization by grouping together all of the stimulation control logic.
In this example, we group from the “Chamber 1” node to the first “Merge” node and
name it “Stim Control”.

We now have all of the required logic for controlling data acquisition and triggering
stimulation such that photometry data will be acquired while the animal is located in
chambers one and three and stimulation will be triggered when the animal enters
chamber one. Before running an experiment with this workflow, be sure to configure
the image processing grouped workflow as outlined in the “Three Chamber Animal
Tracking” section.

227

Real Time Analysis
In this section we will discuss the addition of real time analysis algorithms that can
generate more useful data from the image processing algorithms. The image
processing algorithm developed and used in the previous sections produces the
following data for every behavioral camera frame: Frame Count, Computer Timestamp,
Centroid, and the chamber the animal is located in. With this information, we can
conduct a variety of analyses in real time. This section will cover where in the workflow
to insert these real time analyses and will cover three common types of real time
analysis algorithms. In particular, we will implement algorithms for tracking the duration
of time the animal spends in each chamber, the total distance traveled (in pixels), and
the velocity (in pixels per millisecond).

228

Organization:
In this example, we will add these real time analysis algorithms to the workflow
developed in the previous section. However, similar methods can be used to add
analysis algorithms to other machine vision workflows. Our first task is to find a
location within our workflow that we can insert these algorithms, without affecting the
functionality of the workflow. Our analyses require the information produced by the
“Image Processing” grouped workflow so we will insert them immediately after that
node. However, we need to be sure that we are not affecting our stimulation and
acquisition control logic for the photometry data stream. With this in mind, a good
place for our real time analysis logic is to be located immediately after the “Image
Processing” grouped workflow, parallel to the “FP with Acq and Stim Control” grouped
workflow. Insert a “Group Workflow” node here and name it “Analysis”.

Inside of the “Analysis” grouped workflow, we will want to be sure to preserve the
existing data produced by the “Image Processing” grouped workflow as well as
analyze this incoming data. Here we will conduct all of our analyses in parallel data
streams and combine them with our preserved incoming data. For our first analysis
algorithm, we will track the duration of time the animal has spent in each chamber with
units of milliseconds. Begin implementation by adding three “Python Transform” nodes,
parallel to each other and the existing data stream. Combine them using a “Zip” node.
Each of these three “Python Transform” nodes will be responsible for tracking the
duration of time the animal spends in a particular chamber. Be sure to name these
nodes to indicate which chamber they are analyzing.

229

Before implementing our python scripts, let’s finish the structure of the “Analysis”
grouped workflow. This grouped workflow needs to output all of the image processing
data as well as all of the analysis data. Since the analysis algorithms will produce data
at the same rate as the image processing algorithms, we can combine these data
streams with a “Zip” node connected to the “Source1” node and the already existing
“Zip” node. With this format, we will be able to output our image processing data and
analysis data in a format that a “Csv Writer” can handle, and we can easily add more
analyses by adding them in parallel to the three “Python Transform” nodes.

230

We can also add a level of organization by naming the data coming out of each “Zip”
node. Do this by adding an “Expression Transform” after each “Zip” node.

231

The “Expression Transform” connected to the “Workflow Output” will be used to
specify between image processing data and analysis data. The below script will
rename Item1 (the data coming from the “Source1” node) to “ImageProcessingData”
and will rename Item2 (the data coming from the zipped analysis algorithms) to
“AnalysisData”.

232

The other “Expression Transform” will rename the data coming from the zipped
analyses. In this case, we will rename items one through three to “Chamber1Time”
through “Chamber3Time”. We will update this “Expression Transform” node every time
we add a new real time analysis algorithm.

The immediate effect of this level of organization is that the element names are
displayed in the output tree of the “Analysis” grouped workflow. Right click it and
navigate the “Output” tree to see all of the elements contained in the output data of
this grouped workflow. This organization is also useful because we can have the “Csv
Writer” node write these element names as column names in the output .csv file.

233

Chamber Duration:
With our “Analysis” grouped workflow structured and organized, let’s delve into the real
time analysis scripts we will be using. Open the “Analysis” grouped workflow and open
the “Chamber1Time” python script editor. Here will be where we implement the logic
for keeping track of the amount of time the animal spends in chamber one. When
writing these scripts, it is often easiest to start with bringing in the required input
information for the algorithm. In this case, in order to keep track of the amount of time
spent in chamber one, we will need the timestamp and the boolean value indicating if
the animal is in chamber one.

234

Next let’s specify our output. In this case, we will be outputting a float value indicating
the amount of milliseconds that the animal has spent in chamber one. Knowing this, we
can specify that the return data type is a float and we can set up a global variable that
will keep track of the total time spent in the chamber.

235

Now we need to solidify our algorithm that will accept the timestamp and boolean
indicator information and update the total time global variable. One way to do this is to
determine if the animal is in chamber one during the current frame and during the
previous frame. If so, take the time difference between those two frames and add it to
the total time variable. Implementing this will require two more global variables to keep
track of the previous frame’s timestamp and boolean indicator.

236

The bulk of the algorithm is complete, however, we have yet to implement logic for
handling the first frame. During the first frame, we only want to update the previous
frame’s timestamp and boolean indicator. We also want to be sure we return the total
time variable.

237

We have now completed the algorithm for tracking the duration of time the animal
spends in chamber one. We can copy this script into the chamber two and three
python scripts and make minor changes in order to complete those algorithms.
Technically, all that has to be changed is reading in “value.Chamber1” to
“value.Chamber2” or “value.Chamber3”. However, we will also change the variable
names and comments to show that those scripts are for chambers two and three.

238

Distance Traveled:
The next algorithm we will go over is the distance traveled algorithm. This will accept
the centroid information as an input and track the total distance, in pixels, that the
animal has traveled over the course of the experiment. Begin by adding another
“Python Transform” node, parallel to the chamber time scripts. Name this node
“Distance Traveled”.

239

Begin the “Distance Traveled” script by bringing in the X and Y coordinate information
from the Centroid input.

240

The output of this script will be a float value containing the total distance traveled. We
will need a global variable to contain the distance traveled value and we need to
specify that this script returns a float value.

241

There is a major edge case that needs to be handled. If the animal is not detected in
the enclosure, the image processing algorithm will output NaN (Not a Number) values.
These values require special treatment so that we do not experience runtime errors. A
simple way to handle these potential NaN values is to import the math library and to
return the total distance when a NaN value is detected.

242

Our algorithm will find the distance traveled per frame and add that value to the total
distance. With this goal in mind, we need to declare variables to store the X and Y
position of the animal in the previous frame. We will initialize these to negative values,
values that the imaging processing algorithm will never output, so that the algorithm
can easily determine whether or not it is the first frame in which an animal is detected
in the enclosure.

243

For the first frame in which an animal is detected in the enclosure, we will update the
variables containing the animal’s position in the previous frame.

244

Now that the major edge cases are handled, we can implement the algorithm. Here we
will find the distance traveled between the previous and current frames and add it to
the total distance traveled variable. Then we will update the variables containing the
previous position of the animal. Finally we will return the updated total distance
variable.

245

With that, the distance traveled algorithm is complete, be sure to update the
“Expression Transform” that names the elements coming from the analysis algorithms.

Velocity:
Now we will transition to the last algorithm of this section: Velocity. Here we will
implement an algorithm that will output the X and Y velocity of the animal as well as the
speed of the animal every frame. Begin by inserting a “Python Transform” node parallel
to the previous analysis algorithms. Name it something unique such as “Velocity”.

246

For the velocity algorithm, we will need to bring in the input values containing the X and
Y position of the animal as well as the computer timestamp of the current frame. We
will also use global variables to contain all of these values for the previous frame.

247

Next we must handle the edge case where no animal is detected in the enclosure. This
can be handled the same way as in the distance traveled algorithm, except it will return
a “None” value. Be sure to import the math library again.

248

Then, handle the edge case for the first behavioral camera frame that the animal is
detected. Do this the same way as before, with the addition of updating the previous
frame’s timestamp. Also, have this return a “None” value.

249

Next, find the distance traveled between the previous frame and the current frame.
Also, find the time difference.

250

To find the X and Y velocity as well as the speed of the animal we need to divide the
“dx”, “dy”, and “dr” variables by “dt”.

251

The last step is to configure the output of this script. We have three values we want to
output: “dxdt”, “dydt”, and “drdt”. These should be outputted as elements of a
System.Tuple so that they are easily accessible within Bonsai and easily writable using
a “Csv Writer” node. Begin by importing the system library into the script and
specifying the return data type.

252

Now, specify the return value as “System.Tuple.Create(dxdt, dydt, drdt)”.

253

With that, the velocity algorithm is complete. Be sure to update the “Expression
Transform” such that each element of the velocity algorithm has an informative name.

With the “Expression Transform” written in this way, the output will be flattened so that
there is not a Tuple contained within the output Tuple.

254

Appendix I: Node Glossary

Acquisition Control
The “Acquisition Control” node generates Harp messages that can be sent to the
FP3002 system through the “FP3002” node. These messages work to command the
system to start and/or stop data acquisition. This node has two configurable
properties: “Mode” and “Streams”. The “Mode” property dictates whether the node will
generate a “Start” command, “Stop” command, or a “Control” command. Meanwhile,
the “Streams” property dictates which acquisition stream this command is going to,
either the “Photometry” or the “External Camera” stream. Currently, the only
acquisition stream that can be commanded is the “Photometry” stream.

The “Mode” property can affect the type of input that this node can accept. When the
“Mode” is set to “Start” or “Stop”, any data type can be sent to the input of the
“Acquisition Control” node. When this occurs, the node will output the “Start” or “Stop”
command every time the node accepts an input. Meanwhile, if the “Mode” property is
set to “Control”, the node can only accept boolean values (True/False). When the node
accepts a True value, it will output the “Start” command, and when the node accepts a
False value, it will output the “Stop” command.

This node can be used in a variety of experimental designs and examples of its
implementation can be found throughout the “Data Acquisition” chapter.

255

Digital IOs
The “Digital IOs” node is used to record and timestamp the signals on the digital input
and output ports on the FP3002 system. The timestamp generated with this node uses
the internal clock of the FP3002 system so the data recorded by this node will already
be aligned to the photometry data saved within the “Photometry Writer” node.
This node accepts the output of the “FP3002” node as its input. It processes the harp
messages coming from the “FP3002” node, filtering out all messages not related to
digital port states. Then it outputs data that is readily writable to a .csv file using the
“Csv Writer” node.

The “Digital IOs” node has two properties that must be specified: “Include Timestamp”
and “Type”. The “Include Timestamp” property should almost always be set to “True”
and will cause the output data type to be of type “Bonsai.Harp.Timestamped<bool>”.
This data type is readily writable to storage so a “Csv Writer” can be connected directly
after the node, saving a .csv file with two columns containing the system timestamp
and the state of the port. When the “Include Timestamp” node is set to “False”, the
output will be of type “boolean”. This boolean value should not be saved to storage
without a timestamp since it will not be alignable to other saved datasets.

256

The “Type” property dictates which port the node will read the state of. You can select
a specific port or you can select all the ports using the “State” value. This will either
cause the output to be of type “byte” or “Bonsai.Harp.Timestamped<byte>” depending
on if the “Include Timestamp” property is set to True or False. One common use for this
node is to provide precise timestamps of the laser ON/OFF state. The data in the
“Stimulation” column of the .csv file saved by the “Photometry Writer” only indicates if
stimulation is occurring and does not indicate precisely when the laser changes state
during stimulation. With some configuration, this node has this capability. First, be sure
that the “Output 1 Routing” property within the “FP3002 Setup” window is set to
“Both”. This will ensure that the internal signal used to control the laser state will be
sent to both the laser and the Digital Output 1 port. Then configure the “Digital IOs”
node to have “Include Timestamp” set to “True” and “Type” set to “Output 1”. When
the output of the “Digital IOs” node is connected to a “Csv Writer” it will save the laser
state with timestamps using the system’s internal clock.

257

Digital Output
The “Digital Output” node is used to generate Harp Messages to be sent to the FP3002
system using the “FP3002” node. These Harp Messages are mostly used to command
the FP3002 system to set the Digital Output ports to a particular state. However, this
can also be used to manually specify the state of the LEDs, Internal Camera Trigger,
and Camera GPIO Lines.

This node has two properties to specify: “Command” and “Mask”. The “Command”
property will specify the type of command contained within the Harp Message. The
options are to “Set”, “Clear”, “Toggle”, or “Write” commands. The “Mask” property will
dictate which signal within the system we are controlling. Most of the time, we will
specify this property to “Output 0” to control the digital output 0 port.

Below are descriptions of each “Command” and “Mask” property:
Commands:

Set - Sets the internal signal to HIGH
Clears - Clears the internal signal to LOW
Toggle - Toggles the internal signal to its opposite state.
Write - Sets the internal signal to HIGH when True is passed to the node,
otherwise toggles the signal to LOW.

Commands:
None - Cause the command to be a null command, making no state changes.
L415/L470/L560 - Specifies the internal signal to be one of the LEDs.
Output 0/1 - Specifies the internal signal to be one of the digital output ports.
Trigger - Species the internal signal to be the trigger line of the internal camera,
causing the camera to take another frame.
Line 2/3 - Species the internal signal to be the Camera GPIO lines 2 or 3.

258

FP3001
The “FP3001” node is a source node used to communicate with the FP3001 system.
This node processes the information coming from the FP3001 system and generates
photometry data frames to represent the data. Each photometry data frame contains
an image, frame counter, system timestamp, frame flags, and activity data. The
“FP3001” node possesses the following properties:

AutoCrop: A boolean value used to specify whether or not the camera will
automatically crop the incoming image. When set to “True” the “FP3001” node will
crop the image to the smallest rectangle bounding all of the drawn ROIs. This act of
cropping the image allows the camera on the system to run at faster frequencies.

ExposureTime: An integer value used to specify the exposure time of the internal
camera of the FP3001 system. This value must agree with the FPS set on the driver
box such that the exposure time is at least one millisecond less than the period of data
acquisition. For example, when the FPS is set to 40Hz, the period of data acquisition is

equal to . In this 25ms duration, the camera must go𝑃𝑒𝑟𝑖𝑜𝑑 = 1
40𝐻𝑧 ⋆ 1000𝑚𝑠

1𝑠𝑒𝑐 = 25𝑚𝑠

through its exposure time and its dead time. The dead time must be at least 1ms which
means in this 40Hz case, the exposure time is recommended to be 24ms.

Index: An integer value used to specify which connected spinnaker camera to connect.
This property is used to ensure that the “FP3001” node correctly connects to the
FP3001 system and not a behavioral camera.

Regions: A custom data type property used to store the dimensions and locations of
the user-defined ROIs. This property is only used to store this data and not used to
define the ROIs. In order to define the ROIs, double click the “FP3001” node while the
workflow is stopped and the system is connected.

Serial Number: A string value used to specify the serial number of the camera to
connect. Similar to the “Index” property, this property can be used to ensure that the
“FP3001” node correctly connects to the FP3001 system and not to a behavioral
camera.

259

Trigger Mode: A dropdown menu used to specify the trigger sequence of the FP3001
system. This must agree with the driver box in order for the “FP3001” to assign the
correct frame flags to the photometry data frames. In order to configure the FP3001
node be sure to specify the properties mentioned above. Then, double click the
FP3001 node to open a calibration window. Begin data acquisition on the driver box
and the calibration window should populate a running plot of photometry data. There
will be a signal for each ROI specified, and if none are specified the signal will
represent the pixel average of the whole image. To draw ROIs, click the “Calibrate
Regions” button to open a new window containing the camera image that you can
draw regions by left clicking and dragging.

Within the “Regions” window you can move already drawn ROIs by left clicking them
and dragging them to a new position. You can resize an existing ROI by right clicking it
and dragging. While interacting with the “Regions” window be cautious about stray
clicks within the window as they will draw ROI that are too small to see. Whenever
drawing ROIs, double check that the number of signals shown in the “Calibrate
Regions…” window matches the desired number of drawn ROIs in the “Regions”
window. If there are more signals than visible ROIs, then a small ROI has been
accidentally drawn. You can correct this by using the “Tab” key within the “Regions”
window to cycle through ROIs to select the unintended ROI. Then press the “Del” key
to delete the extra ROI.

260

FP3002
The “FP3002” node is used to communicate with the FP3002 system. This node sends
commands to the system to control its functionality and receives the data generated by
the system. This node generates data of type “Bonsai.Harp.HarpMessage”. This data
type utilizes the Harp protocol for communicating with embedded systems and requires
particular nodes for processing the data contained by these Harp Messages. For
example, at a user defined frequency, the FP3002 system will output photometry data in
the form of a Harp Message. This message is then processed by the “Photometry Data”
node to produce data that is easier to visualize and write to storage. This same protocol
is used to read in system temperature, photodiode measurements, and digital IO states
from the system.

261

The “FP3002” node possesses the following properties within its property panel:

Acquisition Mode: A dropdown menu used to specify the initial state of data acquisition
when the Bonsai workflow starts. When the workflow is started this is the first command
that the “FP3002” node sends to the system. In most cases this command will be to
either start or stop the photometry data acquisition. However, you can also use this to
start or stop an external camera connected to the FP3002 system.

Auto Crop: A boolean value used to specify whether or not the camera will automatically
crop the incoming image. When set to “True” the “FP3002” node will crop the image to
the smallest rectangle bounding all of the drawn ROIs. This act of cropping the image
allows the camera on the system to run at faster frequencies.

Port Name: A dropdown menu used to select the port that the FP3002 system is
connected to. When selecting the correct port, the system information will populate the
Bonsai command window.

Regions: A custom data type property used to store the dimensions and locations of the
user-defined ROIs. This property is only used to store this data and not used to define
the ROIs.

262

The “FP3002” node has a variety of configuration properties that are accessible through
the “FP3002 Setup” window. To access these configuration properties, double click the
“FP3002” node while the workflow is stopped and the system is connected and powered
on.

This “FP3002 Setup” window contains all of the configurable system settings and a
variety of tools used to calibrate, save and load these settings. Beginning with the
organization of this window, the “FP3002 Setup” window consists of four primary panels:
“Load / Save”, “Setup”, “FP3002 Configuration”, and “Trigger Sequence”.

263

Load / Save:
This panel is located in the top left corner of the window and is used to load and save
FP3002 configuration settings. Once the FP3002 system is configured for a particular
experiment, you can click the “Save Device Settings” button to save these settings to an
XML file. When complete a new window will appear asking whether or not you want to
“save the register values on persistent device memory”.

If you select “Yes” here, the system settings will not only be saved to an XML file on your
computer but will also be saved to the FP3002 system itself. This way, the system will
continue to have these settings after disconnecting and power cycling the system.
Selecting “No” will cause only the XML file to be saved to the computer and the system
will continue to have its default settings after a disconnect and power cycle.

If an XML file containing the system settings for a particular experiment has already been
previously saved, you can use the “Load Device Settings” button to load the settings into
the “FP3002” node and onto the system itself.

264

The XML file itself can be referenced during post-hoc analysis to verify the system
settings used during a particular experiment.

This XML file contains all of the system settings, however some of them are stored in a
way that is easier for the computer to understand but harder for the user to understand.
The first few lines of this file contain the system’s serial number labeled as “Id”, “Clock
Synchronizer”, “Output 1 Routing”, “Screen Brightness”, and “Frame Rate” in Hertz.
These are displayed the same way as in the “FP3002 Setup” window.

265

Below that is the trigger sequence represented by a list called “Trigger State” where each
item of the list is called a “Trigger” and informs which LED is to be triggered.

Next is the power level of each LED. These values are stored as unsigned, 16-bit integers
that range linearly from 9600 to 35200. The only deviation from this rule is that
sometimes LED powers of 0% will appear as either 0 or 9600 here. In order to convert
these values to a percent, like what is displayed in the “FP3002 Setup” window, use the

following equation: .𝐿𝐸𝐷 𝑃𝑜𝑤𝑒𝑟 (%) = 𝐿𝐸𝐷 𝑃𝑜𝑤𝑒𝑟 (𝑋𝑀𝐿) − 9600
35200 − 9600 ⋆ 100%

Following the LED powers is the Laser amplitude. This value is stored as an unsigned,
16-bit integer that ranges linearly from 0 to 65535. In order to convert this value to a
percent, like what is displayed in the “FP3002 Setup” window, use the following

equation: .𝐿𝑎𝑠𝑒𝑟 𝑃𝑜𝑤𝑒𝑟 (%) = 𝐿𝑎𝑠𝑒𝑟 𝑃𝑜𝑤𝑒𝑟 (𝑋𝑀𝐿)
65535 ⋆ 100%

From the Laser amplitude value, the next several values are stored the same way that
they are displayed in the “FP3002 Setup” window. These values include the “Pulse
Frequency” (in Hertz), “Pulse Width” (in milliseconds), “Pulse Count”, “Digital Output 0”,
“Digital Input 0”, and “Digital Input 1”.

266

The remainder of the information stored within the XML file relates to the ROIs used
during the experiment. Each ROI will have its center point, width, height, and angle
stored here. The units for the center point, width, and height are such that the x value
describes the number of pixels from the left edge of the image and the y value describes
the number of pixels from the top edge of the image. The angle value will always be zero
since functionality for rotating ROIs does not exist.

The order that the regions appear in the XML file matches the indices of the ROIs in the
.csv file output by the “Photometry Writer” node and the indices displayed in the
“Regions” window while drawing ROIs. So in the example above, since the first
“RotatedRect” is on the right half of the image, it represents the ROI labeled “G0”. The
second “RotatedRect” is on the left half of the image, and so it represents the ROI
labeled “R1”.

267

Setup:
This panel is located in the bottom left corner of the window and is used to calibrate the
ROIs, LED powers, and laser settings for stimulation. Below is information about how to
use each of the tools found within the “Setup” panel:

“Calibrate Regions” -
The “Calibrate Regions” tool is used to define the regions of interest (ROIs). These
ROIs will be used in two ways. First, when the “Auto Crop” property of the
“FP3002” node is set to “True”, these regions will dictate the dimensions and
location of the cropped image, allowing the FP3002 system to acquire data at
faster frame rates. Second, these ROIs will indicate to the “FP3002” node which
pixels are grouped together for averaging. Upon clicking the “Calibrate Regions”
button, the system will begin to acquire at 40Hz with a trigger sequence
consisting of only the 470nm LED. A “Calibrate Regions” window will open. This
window consists of a button labeled “Calibrate Regions”, a data visualizer, and a
power scroll bar. Here, the “Calibrate Regions” button is used to open a new
window called “Regions” that allows the user to draw ROIs onto the image. The
data visualizer is a rolling plot containing the signal extracted from each ROI. If no
ROIs are defined, then the signal will represent the average pixel value of the
whole image. The power scroll bar is used to adjust the power of the L470 so that
each fiber in the image is easily visible.

268

Once the “Regions” window is opened using the “Calibrate Regions” button found
in the “Calibrate Regions” window, adjust the power scroll bar and focus the
image using the translator on the system until the fibers are easily visible in the
image. Then left click and drag to draw a new ROI. Move the new ROI by left
clicking and dragging it to be centered on a fiber. Finally, resize the ROI by right
clicking and dragging it to fit inside of the fiber. Whenever a new ROI is created,
the data visualizer will update such that there is a signal for every existing ROI.

During this process be cautious of stray clicks inside of the “Regions” window.
Any click and drag on the window, no matter how small, will create a new ROI.
That being said, it is possible to unknowingly create a new ROI that is barely
visible and not easily selectable. Always verify that the number of signals found in
the data visualizer matches the number of desired ROIs. If there are more signals
than desired ROIs, then use the “Tab” key within the “Regions” window to cycle
the selected ROI until the extra ROI is selected. Once selected use the “Del” key
to delete it.

269

Once the ROIs are successfully drawn, close the “Regions” and “Calibrate
Regions” window. The ROI information will be stored within the “Regions”
property in the properties panel of the “FP3002” node. Note: This information will
be displayed once the “FP3002 Setup” window is closed and the “FP3002” node
is deselected and reselected.

For more information on how to interact with the “Regions” window please see the
“Calibrate Regions” section of the Appendix II: Hotkeys

“Calibrate Power” -
The “Calibrate Power” tool is used in conjunction with a power meter to select the
appropriate LED power percentage for an experiment. The power coming out of a
single fiber of a patch cord should be high enough to record activity and low
enough to limit photobleaching of the region of the brain that is being observed.
Generally, it is recommended that the power coming out of the ferrule is to be
approximately 50μW for 200μm fibers and approximately 120μW for 400μm fibers,
to start. Whenever possible, use the lowest light powers possible. This will
damage the tissue less and increase longevity of the experiment. These
recommendations are valid for experiments under one hour. For longer
experiments, consider lowering the duty cycle of the LEDs and/or lowering the
LED powers.

270

Upon clicking the “Calibrate Power” button in the “FP3002 Setup” window, a
“Calibrate Power” window will appear. This window contains a power scroll bar for
each LED that allows you to manually adjust each LED’s power while measuring
the power of the light coming out of the ferrule.

Once the appropriate percentage of power is found for each LED, close the
“Calibrate Power” window and enter these values into the “FP3002 Configuration”
panel.

“Calibrate Laser” -
The “Calibrate Laser” tool is used in conjunction with a power meter to specify the
appropriate laser power percentage and desired pulse train parameters. Once the
“Laser Wavelength” parameter within the “FP3002 Configuration” panel is
specified to “450” or “635”, the “Calibrate Laser” button will become accessible.
After clicking the “Calibrate Laser” button the “Calibrate Laser” window will
appear. Depending on the specified “Laser Wavelength”, the “Calibrate Laser”
window will appear differently. Below is the “Calibrate Laser” window for the
635nm laser:

271

The 635nm laser’s “Calibrate Laser” window has two different modes, alignment
mode and power measurement mode. When this window is initially opened, it will
be in alignment mode. The user has access to all of the stimulation parameters to
help with this alignment. Once the parameters are specified, click the “Trigger
Laser” button to begin stimulation and start aligning the laser using the two-axis
translator at the back of the optical housing. Once aligned to the desired fiber,
click the “Stop Laser” button to stop the laser pulse train. While aligning the laser,
the pulse train will continue until stopped. However, there is a safety measure in
place such that the duration of the pulse train will be limited to 30 seconds if all of
the conditions below are met:

1. The amplitude is over 50%
2. The duty cycle is over 75%
3. The total pulse train duration is over 30 seconds.

To measure the power of the laser, click the “Measure Power” button. This will
configure the laser to be in constant mode for 30 seconds, allowing power
measurements to be acquired. Here, the only stimulation property users have
access to is the “LaserAmplitude” property.

272

When the “450” laser is specified, the “Calibrate Laser” window is more simplified
since users do not have to align to a patch cord. In this case, the users can
stimulate the laser in constant mode for power measurement purposes. Do this by
specifying the “Laser Amplitude” value and clicking “TriggerLaser” to start
stimulation.

Once the laser’s power and pulse train parameters are set, close the “Calibrate
Laser” window and the parameters will be updated in the “FP3002 Configuration”
panel. However, when working with the 450nm laser, you will still need to set the
desired pulse train parameters within the “FP3002 Configuration” panel.

FP3002 Configuration: This panel is located in the center of the window and contains all
of the configurable system settings. The system settings are grouped together into six
sections: “Configurations”, “Digital IO”, “Photometry”, “Power”, “Power (Laser)”, and
“Stimulation Pulse”.

“Configurations” -
The “Configurations” section allows the user to change the hardware
configuration of the FP3002 system. Here the user has control over three system
settings: “Clock Synchronizer”, “Output 1 Routing”, and “Screen Brightness”.

273

“Clock Synchronizer”: Specifies whether the FP3002 system outputs its own
clock line, or synchronizes to an external clock. In most experiments this property
is set to “ThisDevice”.
“Output 1 Routing”: Specifies whether the digital output pin 1 state is routed to
the BNC port, internal laser, or both. In experiments involving stimulation, this
property should be set to “Both” so that the laser can be triggered and so that the
“Digital IOs” node can be used to record and timestamp the laser state.
Otherwise, this property should be set to “BNC” so that the Digital Output 1 port
can be used to output a TTL without triggering the internal laser.
Screen Brightness”: Specifies the brightness of the LCD screen on the FP3002
system.

“Digital IO” -
The “Digital IO” section allows users to configure the Digital Input ports and the
Digital Output 0 port.

“Digital Input 0/1”: Specifies how the FP3002 system handles +5V TTL signals on
the Digital Input ports. There are a total of 12 options for configuring these input
ports.

None: Nothing will occur when there is a TTL signal on the Digital Input port.
Event Rising: Sends a Harp Message to Bonsai indicating an event occurred
whenever the +5V TTL signal changes from LOW to HIGH.

274

Event Falling: Sends a Harp Message to Bonsai indicating an event
occurred whenever the +5V TTL signal changes from HIGH to LOW.
Event Change: Sends a Harp Message to Bonsai indicating an event
occurred whenever the +5V TTL signal changes from LOW to HIGH or HIGH
to LOW.
Control Trigger: Allows the +5V TTL signal to control data acquisition of the
FP3002 system. While the TTL signal is HIGH, the system will be acquiring
data frames and while the TTL signal is LOW, the system will stop acquiring
data frames.
Control External Camera: Allows the +5V TTL signal to control data
acquisition of an external camera. While the TTL signal is HIGH, the external
camera will be acquiring data frames and while the TTL signal is LOW, the
external camera will stop acquiring data frames.
Control External Camera Events: Allows the +5V TTL signal to control data
acquisition of an external camera. While the TTL signal is HIGH, the external
camera will be acquiring data frames and while the TTL signal is LOW, the
external camera will stop acquiring data frames. In addition, causes the
FP3002 system to send Harp events to Bonsai with every external camera
exposure.
Control Trigger and External Camera: Allows the +5V TTL signal to control
data acquisition of both the FP3002 system and an external camera. While
the TTL signal is HIGH, the FP3002 system and the external camera will be
acquiring data frames and while the TTL signal is LOW, the FP3002 system
and the external camera will stop acquiring data frames.
Control Trigger and External Camera Events: Allows the +5V TTL signal to
control data acquisition of both the FP3002 system and an external camera.
While the TTL signal is HIGH, the FP3002 system and the external camera
will be acquiring data frames and while the TTL signal is LOW, the FP3002
system and the external camera will stop acquiring data frames. In addition,
it causes the FP3002 system to send Harp events to Bonsai with every
change in camera exposure state.
Start Stimulation Finite: While the +5V TTL signal is HIGH, the FP3002
system will begin stimulation with a finite duration pulse train. The laser will
pulse the number of times specified with the “Pulse Count” property.

275

Start Stimulation Continuous: While the +5V TTL signal is HIGH, the
FP3002 system will begin stimulation with a continuous pulse train. The
pulse train will possess all of the parameters specified in the “Stimulation
Pulse”, except the pulse count will be infinite. This pulse train will continue
until the TTL signal returns LOW.
Start Stimulation Interleave: A currently disabled mode of stimulation.
When enabled, it will allow for stimulation to occur during the dead time of
the camera.

“Digital Output 0” - Specifies how the FP3002 system outputs +5V TTL signals
from the Digital Output 0 port. There are three options for the digital output 0 port.

Software: Specifies that the digital output signal will be generated within
Bonsai using a software trigger and the “Digital Output” node, then sent to
the system through the “FP3002” node.
Strobe: Specifies that the camera's strobe will be sent out of the digital
output 0 port such that the port will have a HIGH value while the internal
camera is exposing, and a LOW value during the internal camera’s dead time.
Trigger State: Specifies that the digital output signal will be HIGH while an
LED is ON and LOW while an LED is OFF.

“Photometry” -
The “Photometry” section contains general photometry settings for the system.

“Frame Rate”: Dictates the frequency at which photometry data frames are
generated. This value has units of “Hertz” and directly determines the frame rate
of the internal camera. Indirectly, this value also determines the frequency of each
LED since the current LED in the trigger sequence transitions every camera frame.
This value ranges from 16-200Hz, however for higher frame rate, the “Auto Crop”
property in the “FP3002” node’s property panel must be set to “True”.
“Trigger State”: Contains the trigger sequence information generated by the
“Trigger Sequence” panel.

276

“Power” -
The “Power” section contains the power percentage of the LEDs. These powers
should be configured using the “Calibrate Power” tool in the “Setup” panel. The
units of these values are displayed as the percentage of the max LED power.

“Power (Laser)” -
The “Power (Laser)” section contains the information pertaining to the internal
laser’s amplitude and wavelength. When conducting an experiment with
stimulation, the “Laser Wavelength” is the first laser property that needs to be set.
When this is set to “450” or “635” the “Calibrate Laser” tool will become
accessible within the “Setup” window. Then, the “Laser Amplitude” setting can be
configured with the “Calibrate Laser” tool.

“Stimulation Pulse” -
The “Stimulation Pulse” section stores the laser pulse train parameters for
experiments with stimulation. These stimulation properties possess a safety
measure meant to prevent overuse of the internal laser. When the stimulation
properties are configured with an amplitude over 50% and a duty cycle over 75%,
then the “Pulse Count” setting will be limited such that the total duration of a
pulse train is less than 30 seconds.

“Pulse Count”: Specifies the number of laser pulses in a finite pulse train. In
continuous pulse trains, this parameter is ignored.
“Pulse Frequency”: Specifies the frequency parameter for laser pulse trains. This
value has units of Hertz with a range of 1-1000Hz.
“Pulse Width”: Specifies the pulse width of laser pulses in a pulse train. This value
has units of milliseconds and must be less than or equal to:

.1
𝑃𝑢𝑙𝑠𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧) * 1000𝑚𝑠

1𝑠𝑒𝑐

277

Trigger Sequence: This panel is located on the right side of the window and contains a
tool for configuring the trigger sequence of the LEDs. This tool configures which LEDs
are triggered and in what order. The last row in the panel does not affect the trigger
sequence and is used to add new LEDs to the sequence.

To delete an LED, select a row in the sequence and click the delete (Del) button on the
keyboard.

To add an LED, click the dropdown menu on the bottom row and select which LED to
use.

To configure the order, click the drop down menu on each row and select where each
LED goes in the sequence. The duty cycle of the LEDs can also be configured by
inserting “None” frames, where no LED will be ON during particular data frames.

278

Group Regions
The “Group Regions” node allows the user to organize the photometry data signals into
local groups by adding custom naming conventions to the photometry data. This node
accepts inputs of type “PhotometryDataFrame” and outputs data of type
“GroupedPhotometryDataFrame”. This node can be connected directly to the
“Photometry Writer” node and will cause the output .csv file to contain custom column
names for the photometry data.

To configure the “Group Regions” node, double click it while the workflow is stopped
to open its editor. Begin by using the “Add” button to add a new member for each local
group.

279

Then for each local group, provide a custom name in the “Name” property and
designate which ROIs belong to each group by listing the index of each region in the
“Regions” property. The indices in the list of regions should be separated by commas.

The effect of these local group names can be seen in the column names shown below:

280

Photometry Data
The “Photometry Data” node is used to process Harp messages from the “FP3002”
node in order to extract photometry data from the incoming image data. This node
filters out Harp messages unrelated to photometry and converts the remaining
messages to usable data. The “Photometry Data” node accepts data of type
“Bonsai.Harp.HarpMessage” and outputs data of type “PhotometryDataFrame”. This
node can be connected immediately after the “FP3002” node and its output can be
connected to any of the following three nodes: “Group Regions”, “Photometry Writer”,
“Visualize ROI”.

This node possesses a “Filter” property that can be set to filter the outgoing data
based on the specified frame flag. This is only used for purposes of real-time
visualization of deinterleaved signals.

281

It is recommended to keep this value as the default “None” filter for data that is being
saved. However, additional “Photometry Data” nodes with filters other than “None” can
be inserted in parallel data streams that do not save data. In general, it is good practice
to only save the raw, interleaved data set, and use deinterleaved data streams only for
visualization during the experiment.

Although the above workflow is sufficient for saving the raw, interleaved data while also
providing visualizations of the deinteleaved signals, there is a more compact and
user-friendly way to visualize deinterleaved signals. If interested in visualizing
deinterleaved signals, please look into the use of the “Visualize ROI” node.

282

Photometry Writer
The “Photometry Writer” node will write the photometry data into storage in the form of
a .csv file. The output file will have at least nine columns, below is a description for
each column:
Column 1, Frame Counter:

Provides a frame number for each photometry data frame. This frame number is
zero based where the zeroth frame is a null frame

Column 2, Timestamp:
The timestamp generated by the system for each frame. This timestamp has units
of seconds since the system turned on.

Column 3, LED State:
Indicates which LED, if any, were on for any particular frame. Here “1” indicates the
L415, “2” indicates the “L470”, “4” indicates the “L560”, and “7” indicates a null
frame (no LEDs).

Column 4, Stimulation:
A boolean value that represents whether stimulation is occurring during this frame.
This is NOT used to determine the Laser state, please see the “Chapter 5:
Stimulation” or the “Digital IOs” node’s entry in the “Appendix I: Node Glossary” for
more information on how to record the laser’s state.

Column 5/6, Output 0/1:
A boolean value that represents the state of the digital output ports during this
frame. If you are sending digital outputs at a rate different from the photometry
frame rate, please see the “Digital IOs” node’s entry in the “Appendix I: Node
Glossary” for more information on how to record the digital output port state.

Column 7/8, Input 0/1:
A boolean value that represents the state of the digital input ports during this frame.
For higher precision recording of the digital input ports, please see “Digital IOs”
node’s entry in the “Appendix I: Node Glossary” for more information on how to
record the digital input port state.

Column 9+, Region Data:
These are the columns where the relative fluorescence data will appear. Each
pre-defined ROI will have its own column.

283

The “Photometry Writer” node has a variety of configurable properties. Three of the
properties it has in common with the “Csv Writer” node: “File Name”, “Overwrite”,
“Suffix”. You can specify the “File Name” property by either double clicking the node
while the workflow is stopped, or clicking the “...” in the “File Name” text box. Be sure
to specify the file extension as “.csv” in the filename. The “Overwrite” property allows
the software to overwrite any files of the same name as specified in the “File Name”
property. The “Suffix” property allows you to keep the same file name for multiple
experiments by appending a unique suffix to the file name. You can either specify this
unique suffix to be an integer value or as a date-time value. The “Include Chart” and
“Include Regions” options allow you to generate a chart of the photometry data
collected during the experiment and an image showing the labeled regions.

284

Stimulation
The “Stimulation” node generates Harp messages that can be sent to the FP3002
system through the “FP3002” node. These messages work to command the system to
start and/or stop stimulation. This node has a configurable “Command” property used
to specify the type of stimulation command it will generate. The “Command” property
will dictate whether the node generates a “Stop” stimulation command, “Start Finite”
stimulation command, or a “Start Continuous” stimulation command.

This node accepts any data type as an input and outputs data of type
“Bonsai.Harp.HarpMessage”. This way it can use any set of nodes as a software trigger
and can be connected directly to the “FP3002” node to send the generated stimulation
command to the FP3002 system.

285

The “Stimulation” node differentiates between a “Finite” and “Continuous” stimulation.
With both stimulation modes, a laser pulse train will be started using the “Amplitude”,
“Wavelength”, “Pulse Frequency”, and “Pulse Width” parameters set in the “FP3002
Setup” window. However, the “Continuous” pulse train will ignore the “Pulse Count”
property, continuing the pulse train until the “Stop” command is sent to the system.
Meanwhile, the “Finite” pulse train will pulse the laser the amount of times specified
with the “Pulse Count” property.

For detailed discussions on implementing different stimulation techniques, please visit
the “Stimulation” chapter.

286

Temperature
The “Temperature” node is used to record the internal temperature, in Celsius,
measured in the FP3002 system. This node accepts data of type
“Bonsai.Harp.HarpMessage” from the “FP3002” node every 10 seconds. It possesses
an “Include Timestamp” property that allows the user to timestamp every temperature
measurement using the FP3002 system’s internal clock. Depending on whether the
“Include Timestamp” property is set to True or False, this node will output data of type
“double” or “Bonsai.Harp.Timestamps<double>”. In either case, this node can be
connected directly to a “Csv Writer” node to record temperature data.

287

Visualize ROI
The “Visualize ROI” node allows for the data from the “Photometry Data” node to be
displayed in the form of rolling plots. It has an automated layout that will maximize the
size of each plot based on the number of visible plots and the dimensions of the
visualizer window. This node has a user interface (UI) that allows for the user to adjust
the configuration settings of each ROI’s plot. The user has control over which plots are
visible, which are deinterleaved, and which are autoscaled. When an ROI’s plot is
deinterleaved, the user also has control over which LED plots are visible and which are
autoscaled. This new node also allows the user to toggle ON/OFF colorblind mode,
creating a more colorblind friendly color palette for deinterleaved plots. The “Visualize
ROI” node also gives the option to change the capacity of the plots, showing more or
less data points per window.

288

This node can only accept data directly from the “Photometry Data” node. The
“Photometry Data” node must have the “Filter” value set to “None” in order for this
visualizer to work properly. You will be able to deinterleave the data within the
“Visualize ROI” node’s visualizer so there is no need to do it beforehand.

The “Visualize ROI” node has one property that must be set before starting the
workflow. In the properties section of the “Visualize ROI” node, be sure to set the
“Time Axis Units” before starting an experiment. Here you can choose what clock/units
you want to use for the x-axis of the plots. The options are “System ON”, “Sys
Workflow Start”, and “Comp Workflow Start”. Below are the description of each
TimeAxisUnits value:

- “System ON”: This will dictate that the x-axis units will be in seconds since the
system turned on, using the clock on the system. This is the native time units
used for the data coming out of the “Photometry Data” node, and what is used
when saving to a .csv file using the “Photometry Writer” node.

- “Sys Workflow Start”: This will dictate that the x-axis units will be in seconds
since the workflow is started, using the clock on the system. This uses the
same clock as the “SystemON”, but will zero the time to when the workflow is
started.

- “Comp Workflow Start”: This will dictate that the x-axis units will be in seconds
since the workflow is started, using the computer’s clock. This is using a
different clock than the “System ON” and “Sys Workflow Start” parameters, but
will use the same clock as other data streams that use the “Timestamp” node.

Be sure to select the appropriate “Time Axis Units” before starting the workflow, as it
will not be able to change once the workflow is started.

289

While the workflow is running, double check that the “Visualize ROI” node is using the
correct visualizer. Right click on the “Visualize ROI” node, click “Show Visualizer”, and
make sure that “Neurophotometrics.Design.ActivityVisualizer2” is selected for the
visualizer.

Double click the “Visualize ROI” node to open the activity visualizer. Adjust the size of
the window until the plots are easily visible, you can maximize the window to make the
plots as large as possible. As you adjust the size of the window, the layout and size of
the plots will automatically change to maximize the size and visibility of each plot.

290

This visualizer has a built-in UI for easy manipulation of the plots. First, you can change
the amount of data points each plot shows at a time by clicking on the capacity value,
typing in the new number of data points, then pressing the return key or clicking
elsewhere on the visualizer. Note that increasing the capacity will display more points
starting from the time at which capacity was increased. Increasing or decreasing the
capacity will not display data points collected before the capacity was altered.

To access the configuration settings of each plot click on the “Configure Plots” tab at
the bottom of the visualizer. Then click the Configuration tab for the plot you wish to
configure.

Here you have the options to adjust the following settings:
- Plot Visible: Toggles whether the plot is visible. The less plots that are visible the

more space the visible plots will have, making them larger and easier to see.
- Deinterleave: Toggles whether to deinterleave the incoming FP data. This will

separate the plot into multiple axes, one for each LED.
- AutoScale: Toggles whether the plot’s y-axis will be autoscaled or not. Autoscale

will configure and update the y-axis minimum and maximum limits such that
every data point will be visible.

- Min/Max: When AutoScale is True, this displays the current min and max values
of the y-axis plot and they are uneditable. When AutoScale is False, these values
can be manually set by clicking on the values, typing in the new value, and
pressing the return key or clicking elsewhere.

291

With Latest Timestamp
The “With Latest Timestamp” node is used to generate timestamps for data streams
parallel to the photometry data stream. This node will use the latest photometry data
timestamp for elements of the parallel data stream. Generating timestamps in this
method allows parallel data streams to be timestamped using the system’s clock such
that their data sets will already be aligned to the photometry data set.

There is a significant limitation to this method of synchronizing data streams in that the
accuracy of these parallel data streams’ timestamps will be dependent on the frame
rate of the photometry data stream. Specifically, the timestamps for the parallel data

streams will only be accurate to . Due to this limitation, the “With Latest1
𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒 (𝐻𝑧)

Timestamp” node should only be used for parallel data streams that generate data at a
rate less than or equal to half of the photometry frame rate. For more information on
synchronization, please visit the “Synchronization” chapter.

292

Appendix II: Hotkeys

Bonsai:
Ctrl + A: Select all nodes in the workflow
Ctrl + C: Copies all selected nodes
Ctrl + D: Disable all selected nodes
Ctrl + Enter: Show default editor
Ctrl + G: Group selected nodes into a grouped workflow
Ctrl + N: Create a new workflow
Ctrl + O: Open an existing workflow
Ctrl + S: Save workflow
Ctrl + V: Paste
Ctrl + X: Cut
Ctrl + Y: Redo
Ctrl + Z: Undo
Ctrl + Shift + C: Copy as image
Ctrl + Shift + D: Enables all selected nodes
Ctrl + Shift + E: Export workflow as a .svg image
Ctrl + Shift + G: Ungroups the selected grouped workflow
Ctrl + Shift + S: Save selected nodes as a workflow
Del: Delete selected nodes
F5: Start workflow
Ctrl + F5: Start workflow without debugging
F12: Go to definition (requires Visual Studio Code installed)

Opening FP3002 Node:
Shift + Control + R: Reset device settings
Shift + Control + Alt: Update firmware
Shift + Control: Register camera serial number

Calibrate Regions:
Control + Left Click + Drag: Create uniformly scaled ROI
Control + Right Click + Drag: Uniformly scale existing ROI

293

Right Click + Drag: Scale existing ROI
Left Click + Drag: Move existing ROI
Page Up: Increment Image Scale (Brightness)
Page Down: Decrement Image Scale (Brightness)
Control + Z: Undo
Control + Y: Redo
Control + C: Copy ROI
Control + V: Paste ROI
Delete: Delete ROI
Tab: Select next ROI

Photometry Data Plot:
Control + P: Print Plot
Control + S: Save Plot

294

Appendix III: Troubleshooting

OpenCV Errors
These errors appear when clicking the “Calibrate Regions” button from the “FP3002
Setup” window. This error will present itself by not populating the “Calibrate Regions”
window with data and displaying an error message.

295

Here, Bonsai could not load the “opencv_core2413” DLL file because the wrong
version of the “OpenCV” package was installed. When this error occurs, DO NOT try
and fix it through the “Bonsai - Manage Packages” window. The “OpenCV” package is
unique in that many packages directly or indirectly depend on it. So in the process of
trying to uninstall the “OpenCV” package, you would uninstall almost all Bonsai
packages and eventually run into an error that can only be fixed by uninstalling and
reinstalling Bonsai.

There are two ways to properly fix this OpenCV error. The first option is to fully uninstall
and reinstall Bonsai. To do this, close out of all open Bonsai applications. Then search
“Bonsai” in the Windows Search Bar. Right click on the Bonsai application icon and
click uninstall. This should open the “Programs and Features” window. Find and click
the “Bonsai” program, then click “Uninstall”. Once uninstalled, start a fresh install of
Bonsai. When a fresh version of Bonsai is installed, install the “Bonsai - Starter Pack”
and “Neurophotometrics.Design” packages. These two packages will automatically
install the needed packages for standard operation of fiber photometry workflows.

296

The second option is a little more complex of a process, but will allow you to fix the
error offline, without having to uninstall and reinstall Bonsai. Start by uninstalling the
“Neurophotometrics.Design” package and when the warning message shown below
pops up, click “No”. Then uninstall the “Neurophotometrics” package, also clicking
“No” to the popup warning.

It is important to uninstall the “Neurophotometrics.Design” package before the
“Neurophotometrics” package because “Neurophotometrics.Design” depends on
“Neurophotorics”, throwing an error when trying to uninstall “Neurophotometrics” first.
It is also important to click “No” to the warning messages that pop up because clicking
“Yes” will cause Bonsai to try and fail to uninstall all of the dependencies that these two
packages have.

Once the “Neurophotometrics” and “Neurophotometrics.Design” packages are
uninstalled, close out of all open Bonsai application windows. Open up the Windows
“File Explorer” and navigate to “C:\Users***UserName***” where ***UserName*** is the
user logged in to the computer. Then navigate to
“C:\Users***UserName***\AppData\Local\Bonsai”. Note, on most computers the
“AppData” folder does not show up in the “File Explorer” so you will have to manually
type it in the path at the top of the window. Bonsai’s directory should look like this:

297

Navigate into the “Packages” folder and delete the folder that's name starts with
“OpenCV”.

Caution: Be especially careful and do not delete any folders that start in “OpenTK”,
they look very similar to the “OpenCV” folder. If this happens you might need to
uninstall and reinstall Bonsai to fix the issue.

Now that the “OpenCV” packages are deleted, leave the “Packages” folder to return to
the “Bonsai” folder. Currently, these packages are still listed in the “Bonsai.config” file
so when Bonsai is opened again, it will automatically reinstall all of the deleted folders
to correct itself. To prevent this, the “Bonsai.config” file needs to be carefully edited.

298

Open the “Bonsai.config” in “Visual Studio” or in “Notepad”. This file has four main
sections: “Packages”, “AssemblyReferences”, “AssemblyLocations”, and
“LibraryFolders”. In the “Packages” section, delete all references to any “OpenCV”
packages. To help find all references to “OpenCV” press “CTRL” + “F” to search for
“OpenCV”.

Caution: When deleting all references to any “OpenCV” packages and assembly
locations, be very careful not to delete references to “OpenTK” packages and
assembly locations. This might require a full uninstall and reinstall of Bonsai.

In the “AssemblyLocations” section, delete all references to any “OpenCV” assembly
locations:

In the “LibraryFolder” section, delete all references to any “OpenCV” library locations:

Once all references to any “OpenCV” package or assembly location have been deleted,
save the “Bonsai.config” file and close it. Reopen the Bonsai application and reinstall
the “Neurophotometrics.Design” package. This will automatically install the
“Neurophotometrics” and “OpenCV” packages with the correct version. This process
should have fixed the error. Check by inserting the “FP3002” node into a workflow and
opening the “Calibrate Regions” window. This window will now populate with data if
the fix was successful. However, if there is also a versioning issue for the “OpenTK”
process, then the “Calibrate Regions” button in the “Calibrate Regions” window will

299

also cause an error. Please see the troubleshooting guide for “OpenTK” errors for help
with this.

These errors are caused by the installed OpenCV package being a different version
than what the “Bonsai.Vision.Design” package is looking for. This versioning issue
usually occurs when users manually update the OpenCV package instead of allowing
the “Neurophotometrics” or “Bonsai.Vision.Design” packages automatically installing
the correct version. An example of what NOT to do within the “Bonsai - Manage
Packages” window is to enter the “Update” tab, select “All” for the “Package Source”,
and click “Update All” or click “Update” on the “OpenCV” package.

This process for updating packages will update the “OpenCV” package to a newer
version than the version used within the “Bonsai - Vision” package, causing an error
when trying to use the cameras on Neurophotometrics Fiber Photometry systems.

300

OpenTK Errors
After clicking the “Calibrate Regions” button within the “FP3002 Setup” window, a
“Calibrate Regions” window appears, showing the photometry data coming from the
camera and giving the user control over the L470 LED.

301

The OpenTK error occurs when pressing the “Calibrate Regions” button within the
“Calibrate Regions” window. The error is shown below for reference.

Here, Bonsai could not load the “OpenTK” package with version “3.1.0.0”, which is the
required version for “Bonsai.Vision.Design.2.6.1” and any package that depends on it
(i.e. “Neurophotometrics.0.5.1”).

When this error occurs, DO NOT try and fix it through the “Bonsai - Manage Packages”
window. The “OpenTK” package is unique in that many packages directly or indirectly
depend on it. So in the process of trying to uninstall the “OpenTK” package, you would
uninstall almost all Bonsai packages and eventually run into an error trying to uninstall
“Bonsai - Spinnaker” that can only be fixed by uninstalling and reinstalling Bonsai.

There are two ways to properly fix this OpenTK error. The first option is to fully uninstall
and reinstall Bonsai. To do this, close out of all open Bonsai applications. Then search
“Bonsai” in the Windows Search Bar. Right click on the Bonsai application icon and
click uninstall. This should open the “Programs and Features” window. Find and click
the “Bonsai” program, then click “Uninstall”. Once uninstalled, start a fresh install of
Bonsai. When a fresh version of Bonsai is installed, install the “Bonsai - Starter Pack”
and “Neurophotometrics.Design” packages. These two packages will automatically
install the needed packages for standard operation of fiber photometry workflows.

302

The second option is a little more complex of a process, but will allow you to fix the
error offline, without having to uninstall and reinstall Bonsai. Start by uninstalling the
“Neurophotometrics.Design” package and when the warning message shown below
pops up, click “No”. Then uninstall the “Neurophotometrics” package, also clicking
“No” to the popup warning.

It is important to uninstall the “Neurophotometrics.Design” package before the
“Neurophotometrics” package because “Neurophotometrics.Design” depends on
“Neurophotorics”, throwing an error when trying to uninstall “Neurophotometrics” first.It
is also important to click “No” to the warning messages that pop up because clicking
“Yes” will cause Bonsai to try and fail to uninstall all of the dependencies that these two
packages have.

Once the “Neurophotometrics” and “Neurophotometrics.Design” packages are
uninstalled, close out of all open Bonsai application windows. Open up the Windows
“File Explorer” and navigate to “C:\Users***UserName***” where ***UserName*** is the
user logged in to the computer. Then navigate to
“C:\Users***UserName***\AppData\Local\Bonsai”. Note, on most computers the
“AppData” folder does not show up in the “File Explorer” so you will have to manually
type it in the path at the top of the window. Bonsai’s directory should look like this:

303

Navigate into the “Packages” folder and delete all folders with names starting in
“OpenTK”. This manually deletes all of the “OpenTK” packages.

Caution: Be especially careful and do not delete any folders that start in “OpenCV”,
they look very similar to the “OpenTK” folders. If this happens you might need to
uninstall and reinstall Bonsai to fix the issue.

Now that the “OpenTK” packages are deleted, leave the “Packages” folder to return to
the “Bonsai”. Currently, these packages are still listed in the “Bonsai.config” file so
when Bonsai is opened again, it will automatically reinstall all of the deleted folders to
correct itself. To prevent this, the “Bonsai.config” file needs to be carefully edited.

304

Open the “Bonsai.config” in “Visual Studio” or in “Notepad”. This file has four main
sections: “Packages”, “AssemblyReferences”, “AssemblyLocations”, and
“LibraryFolders”. In the “Packages” section, delete all references to any “OpenTK”
packages. To help find all references to “OpenTK” press “CTRL” + “F” to search for
“OpenTK”.

Caution: When deleting all references to any “OpenTK” packages and assembly
locations, be very careful not to delete references to “OpenCV” packages and
assembly locations. This might require a full uninstall and reinstall of Bonsai.

305

In the “AssemblyLocations” sections, delete all references to any “OpenTK” assembly
locations:

Once all references to any “OpenTK” package or assembly location have been deleted,
save the “Bonsai.config” file and close it. Reopen the Bonsai application and reinstall
the “Neurophotometrics.Design” package. This will automatically install the
“Neurophotometrics” and “OpenTK” packages with the correct version. This process
should have fixed the error. Check by inserting the “FP3002” node into a workflow,
opening the “Calibrate Regions” window and clicking the “Calibrate Regions” button.
Now instead of the error popping up, the “Regions” window opens, allowing you to
align the patch cord and draw ROIs.

These errors are caused by the installed OpenTK packages being a different version
than what the “Bonsai.Vision.Design” package is looking for. This versioning issue
usually occurs when users manually update the OpenTK package instead of allowing
the “Neurophotometrics” or “Bonsai.Vision.Design” packages automatically installing
the correct version. An example of what NOT to do within the “Bonsai - Manage

306

Packages” window is to enter the “Update” tab, select “All” for the “Package Source”,
and click “Update All” or click “Update” on the “OpenTK” package.

This process for updating packages will update the “OpenTK” package to a newer
version than the version used within the “Bonsai - Vision” package, causing an error
when trying to use the cameras on Neurophotometrics Fiber Photometry systems.

307

Camera Connection
Begin by turning on the FP3002 system and connecting it to a USB 3 port on the
computer. Open the lid of the FP3002 system and locate the “Status Indicator LED” of
the camera. This LED is visible when looking at the bottom of the camera on the side
opposite of the camera’s fan.

308

When properly connected, this LED should periodically flash green three times. See the
table below for details on the “Status Indicator LED”.

If no light is present, then the camera is operating as if no connection has been made.
This can be indicative of a port failure, a failed USB3 to Micro-B cable, or a broken
Micro-B port on the system. Disconnect from the current USB3 port and reconnect to
any and all other USB3 or USB2 ports. Check this “Status Indicator LED” for every
port.

If the “Status Indicator LED” displays the USB3 code, then open SpinView and double
check the camera settings. In particular verify that the “3.3V Enable” property in the
“GPIO” tab is checked.

309

If this is unchecked, then there might be communication issues between the internal
camera and Bonsai. In this case, enable the “3.3V Enable” property and click the “Save
Camera Settings Profile” button, agreeing to make this user profile the default camera
profile.

310

