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Neural dynamics underlying birdsong 
practice and performance

Jonnathan Singh Alvarado1, Jack Goffinet2, Valerie Michael1, William Liberti III3, 
Jordan Hatfield1, Timothy Gardner4, John Pearson1,5,6 ✉ & Richard Mooney1 ✉

Musical and athletic skills are learned and maintained through intensive practice to 
enable precise and reliable performance for an audience. Consequently, 
understanding such complex behaviours requires insight into how the brain functions 
during both practice and performance. Male zebra finches learn to produce courtship 
songs that are more varied when alone and more stereotyped in the presence of 
females1. These differences are thought to reflect song practice and performance, 
respectively2,3, providing a useful system in which to explore how neurons encode  
and regulate motor variability in these two states. Here we show that calcium signals  
in ensembles of spiny neurons (SNs) in the basal ganglia are highly variable relative to 
their cortical afferents during song practice. By contrast, SN calcium signals are 
strongly suppressed during female-directed performance, and optogenetically 
suppressing SNs during practice strongly reduces vocal variability. Unsupervised 
learning methods4,5 show that specific SN activity patterns map onto distinct song 
practice variants. Finally, we establish that noradrenergic signalling reduces vocal 
variability by directly suppressing SN activity. Thus, SN ensembles encode and drive 
vocal exploration during practice, and the noradrenergic suppression  
of SN activity promotes stereotyped and precise song performance for an audience.

Adult male zebra finches sing more varied songs when alone (that is, 
during practice) and perform more stereotyped songs for females1,2 
that are also more effective courtship signals6. Notably, electrical and 
immediate early gene activity in a song-specialized part of the basal 
ganglia (BG) (area X; hereafter referred to as sBG) differs across these 
two states3,7,8, and sBG lesions transiently reduce song variability9. 
Nonetheless, how SN ensembles encode variability during practice 
and how their activity is dynamically regulated to enable stereotyped 
song performance are unknown. To address these issues, we used a 
miniature microscope (miniscope) to image calcium activity of SNs 
expressing GCaMP7f under a CaMKII promoter10 in freely singing adult 
male finches (Fig. 1a–c). The CaMKII promoter achieved highly selec-
tive expression of GCaMP and other constructs in SNs (Extended Data 
Figs. 1a, 4d, e). When males sang in social isolation, ensembles of SNs 
displayed dynamic activity patterns, with the timing and participation 
of active neurons changing across consecutive song renditions (Fig. 1d,  
Supplementary Video 1).  Qualitatively, these dynamics were visualized 
by comparing the mean sequential activity in the ensemble across 
renditions to sequential activity in single renditions (Fig. 1e).  We quanti-
fied these dynamics using within-day, within-neuron autocorrelations 
of song-aligned calcium activity, by computing the specificity and 
sensitivity of individual neuron activity, and by computing the prob-
ability that individual neurons participated within the ensemble across 
renditions (Extended Data Fig. 1b–d). Although SN ensemble activity 
was dynamic, it was specific to singing: SNs were largely silent during 

locomotion and other non-vocal movements (Extended Data Fig. 1e–h).  
Finally, SN activity could precede vocal onset (Fig. 1c, Extended Data 
Fig. 2), did not respond to song playback during non-vocal epochs, and 
was unaffected by singing-triggered noise (Extended Data Fig. 1i, j),  
indicating that SNs encode motor-related activity specifically during 
singing.

A major source of singing-related activity to the sBG are projection 
neurons (PNs) in the song premotor nucleus HVC11. In contrast to SNs, 
and consistent with prior work12,13, the peak timing and participation of 
HVC PNs was relatively stable across song renditions within a single day 
(Extended Data Fig. 1c, d). Consequently, the singing-related activity 
patterns in a HVC PN ensemble within any single song rendition were 
similar to the mean across renditions (Fig. 1f). Thus, variable SN activ-
ity during practice was not an imaging artefact or inherited from HVC.

Imaging SNs as the male switched from practice to female-directed 
song performance revealed a stark decrease in activity, with calcium 
signals in the majority of SNs dropping below detection threshold 
(Fig. 2a–c, Extended Data Fig. 3a–g, Supplementary Video 2). This sup-
pression was unrelated to the male’s body movements (Extended Data 
Fig. 3h–j) and was not attributable to photobleaching, as interleaved 
presentations of the female reliably and reversibly diminished SN 
activity during singing (Extended Data Fig. 3e).  To localize where this 
context-dependent switch originated, we used dual-fibre photometry 
to simultaneously image the activity of HVC neurons and their axons 
within the sBG (Fig. 2d, Extended Data Fig. 3k, l).  Neither HVC cells 
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nor their sBG axon terminals showed changes in their singing-related 
activity as the male alternated between song practice and performance 
(Fig. 2e, Extended Data Fig. 3l).  However, similar to miniscope imaging 
of individual SNs, photometric recordings revealed that calcium sig-
nals in SN populations were strongly suppressed during performance 
(Fig. 2f, g, Extended Data Fig. 3m).  Therefore, changes in SN ensemble 
activity directly parallel changes in song variability, and these changes 
are not obvious in HVC or its axons in the sBG.

To test whether diminished SN activity during female-directed 
performance drives more stereotyped song, we expressed the inhibi-
tory opsin ArchT either selectively in SNs or pan-neuronally in sBG 
neurons, using CaMKII or CAG promoters, respectively. Post hoc his-
tology confirmed that ArchT expression in pallidal projection neu-
rons was driven by the CAG but not the CaMKII promoter and, with 
either promoter, illuminating the sBG with green light strongly sup-
pressed neural activity (Fig. 2h, Extended Data Fig. 4a–e). Optogeneti-
cally suppressing SN or sBG neuron activity during a random subset  
(15–30%) of undirected song renditions (Extended Data Fig. 4f) reduced 
across-rendition variability in the fundamental frequency (pitch) of 
targeted syllables (Fig 2i, j, Extended Data Fig. 4g, h). Suppressing sBG or 
SN activity also reduced intra-syllable pitch variation, another feature of 
female-directed song, without altering syllable mean pitch9 (Extended 
Data Fig. 4i, j). Lastly, optogenetic suppression slightly reduced syllable 
durations, which trended in the same direction as changes observed 
during female-directed performance1 (Extended Data Fig. 4k). Thus, 
suppressing SN or sBG neuron activity during song practice recapitu-
lates several of the acoustic changes that characterize female-directed 
singing.

These results show that SNs generate dynamic activity patterns that 
are causally linked to pitch variability. However, zebra finch song com-
prises several spectrally complex syllables organized into an orderly 
sequence, or motif, that cannot easily be summarized by this single 
metric. Thus, we examined the neural code underlying song vari-
ability by modelling the relationships between sBG ensemble activ-
ity and acoustic structure in practice song motifs. We first used the 
variational autoencoder14,15 (VAE), an unsupervised machine learning 

model, to compress sound spectrogram data (n ≈ 16,000 pixels) to 
low-dimensional (n = 32) latent representations (Extended Data Fig. 5a). 
These latent dimensions constitute a parsimonious description of 
song data that nonetheless preserves the rich structure of the original 
spectrograms4 (for a similar approach, see ref. 5). We found that pairs 
of motifs with more correlated region-of-interest (ROI) activity also 
tended to have higher acoustic similarity as quantified by shorter dis-
tances in the VAE’s learned latent space, linking variability in SN activ-
ity patterns to variability in song (Extended Data Fig. 5b, c). We then 
used a VAE to jointly model both sound spectrograms and ensemble 
activity (ROI average fluorescence from about 60 ROIs per bird). Here, 
the addition of a global latent variable (Fig. 3a; Extended Data Fig. 5d) 
enabled us to generate paired observations of ensemble activity and 
vocalization and encouraged the two learned representations to con-
form to one another during training (after correcting for time of day; 
Extended Data Fig. 6a). This joint encoding model achieved positive 
predictive ability relative to control models (Fig. 3b, Extended Data 
Fig. 5d–g), indicating shared information between acoustic and neural 
data. Moreover, when paired, held-out neural and vocal data were inde-
pendently encoded and projected along axes of shared variability in 
the VAE latent space, the resulting representations were more strongly 
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correlated than those produced by random data pairings for all cases 
(Fig. 3c, d). We also detected significant relationships between ROI 
activity, tempo and motif position within a song bout, as well as indi-
vidual SNs that encoded the subsequent number of motifs in a song 
bout, suggesting a relationship between SN activity and song across 
multiple time scales (Extended Data Fig 6b–d). However, positive pre-
dictive performance could still be achieved when restricting analysis 
to only the first motif within a bout (Extended Data Fig. 5h). Therefore, 
the joint model’s performance was not simply owing to correlations 
between relatively slow calcium signals and slow acoustic changes in 
motif structure across a song bout.

Next, we explored the relationships between neural activity and song 
discovered by the joint model. We depicted the effects of movement 
along these shared axes (Fig. 3c, magenta to green) by using simulated 
neural–vocal data pairs to produce contrast spectrograms and neural 
activity maps (Fig. 3d, Extended Data Fig. 6e). Despite the variability in 
ensemble participation and composition depicted in Fig. 1, the model 
learned a set of specific relationships between activity levels in select 
ROIs and specific song features, demonstrating that SN ensembles 
map distinct variants of neural ensemble activity to identifiable, highly 
structured changes in vocal output.

A remaining challenge is to identify the signals that regulate SN activ-
ity and thus influence vocal variability.  Like the mammalian BG16,17, the 
sBG receives input from noradrenaline-releasing neurons in the locus 
coeruleus (LC)18 and dopamine-releasing neurons the in the ventral teg-
mental area (VTA)19 (Extended Data Fig. 7a). Indeed, both noradrenaline 

and dopamine have been proposed to act in the sBG to reduce vocal 
variability during female-directed performance20,21. To explore this 
issue further, we infused either noradrenaline or dopamine antagonists 
into the sBG of adult male finches during practice and female-directed 
performance (Fig 4a, b). Blocking α-adrenergic receptors in the sBG 
abolished the differences in vocal variability that distinguish prac-
tice from performance by selectively increasing the variability of 
female-directed songs without affecting other song features (Fig. 4b, 
Extended Data Fig. 7b–d).  Conversely, activating α-adrenergic recep-
tors in the sBG selectively decreased the variability of practice songs 
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(Fig. 4b, Extended Data Fig. 7d).  Lastly, blocking D1 receptors in the sBG 
did not alter song variability during practice or performance (Fig. 4b, 
Extended Data Fig. 7d), a different outcome from a prior study21 that 
may reflect the briefer drug treatment schedules used here.

We then combined fibre photometry and reverse microdialysis to 
explore whether noradrenaline signalling underlies changes in SN 
activity that distinguish the practice and performance states (Fig. 4c, 
Extended Data Fig. 7e).  First, we established that dialysing muscimol 
into the sBG strongly suppressed calcium signals in SNs during both 
states (Extended Data Fig.7f, g). We then determined that infusing 
noradrenaline or an α-adrenergic receptor agonist into the sBG strongly 
reduced SN activity during practice but not during female-directed 
performance (Fig. 4d, e). By contrast, blocking D1 receptors in the sBG 
did not alter SN activity levels during either practice or performance 
states (Extended Data Fig. 7h, i). In situ hybridization revealed that SN 
cell bodies expressed mRNA for the adrenergic receptor α2c (Extended 
Data Fig. 7j), which are Gi-coupled receptors also expressed in mam-
malian SNs22. Whole-cell current clamp recordings from identified 
SNs (Extended Data Fig. 8a) in brain slices showed that noradrenaline 
suppressed DC-evoked action potential activity in SNs, an effect that 
was reversed by blocking α-adrenergic receptors (Fig. 4f, g, Extended 
Data Fig. 8b–d). Furthermore, blocking these receptors in naive slices 
markedly increased DC-evoked action potential responses and input 
resistances in SNs (Extended Data Fig. 8e–h). Thus, noradrenaline sig-
nalling acts through α-adrenergic receptors to suppress SN activity 
and reduce vocal variability.

These findings suggest that LC neurons, the sBG’s major source of 
noradrenaline, are more active when the male sings to a female than 
when alone. We tested this idea by first confirming that we could meas-
ure context-dependent differences in the expression of the immedi-
ate early gene Fos in the sBG (Extended Data Fig. 7k, l), as previously 
reported3. Extending this analysis to the LC revealed that Fos expression 
was higher during female-during singing (Extended Data Fig. 7m–o), 
consistent with an earlier study23. Further, Fos expression in the LC 
changed with social context but, unlike in HVC or the sBG, it did not 
depend on singing rates (Extended Data Fig. 7n), suggesting that it is 
not simply a consequence of female-directed singing.

Here we have linked social context-dependent changes in SN activity 
to state-dependent changes in song variability. Calcium signals in SNs 
but not in HVC PNs are increased during song practice and strongly 
suppressed during female-directed performance, reminiscent of the 
subtler changes that occur in SN but not HVC PN action potential activ-
ity across these states8. Apparently, small changes in action potentials 
in SNs correspond with large changes in calcium influx, which in turn 
may cause pronounced context-dependent changes in gene expres-
sion3. This study also establishes that noradrenaline suppresses SN 
activity to enable rapid switches between vocal practice and perfor-
mance, consistent with previous immediate early gene studies20 and 
in contrast to models involving dopamine signalling8,21,24 (although 
non-D1 signalling cannot be excluded). The factors that contribute to 
enhanced performance to an audience are not fully understood, but 
probably include arousal, motivation and reward. More specifically, 
noradrenaline signalling is elevated in stressful and arousing situa-
tions25,26, such as performing to an audience. Furthermore, male finches 
are more strongly motivated when singing to a female27, and motivation 
can increase movement vigor and speed without sacrificing accuracy28. 
Finally, courtship is potentially rewarding, and rewarding contexts can 
suppress motor variability29. Regardless of how these factors contribute 
to enhanced song performance, our findings show that SNs drive song 
variability, rather than only passively receiving variability signals gener-
ated elsewhere in the cortico-BG pathway (that is, the lateral magnocel-
lular nucleus of the anterior neostriatum (LMAN); Fig 1a). Moreover, 
while regions outside the sBG also contribute to song variability2,30–32 
and afford sites where noradrenaline can influence song33, establishing 
that SNs generate and regulate song variability is important, given that 

the BG is a site where motor representations34–36 and reinforcement 
signals converge to enable motor learning34,37–39. Indeed, the abundance 
of SNs is speculated to enable the exploration of a high-dimensional 
vocal–acoustic space on a millisecond timescale34. Joint modelling used 
here shows that natural variation in SN ensemble activity patterns can 
be linked to differences in song, revealing a complex but identifiable 
mapping between SN activity patterns and song variations.  Thus, the 
dynamics of SN ensembles have meaningful effects on vocal explora-
tion during practice, and the noradrenaline-dependent suppression 
of these dynamics enables stereotyped and precise song performance 
during courtship.
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Methods

Animals
All experiments were performed in accordance with a protocol 
approved by the Duke University Institutional Animal Care and Use 
Committee. Results were collected from a total of 64 adult (>80 days 
post hatch (dph)) male zebra finches (Taeniopygia guttata).

Viral injection surgeries
Adult zebra finches (80–163 dph) were anaesthetized with 2% isoflurane 
gas before being placed in a custom stereotaxic apparatus. After apply-
ing a topical anaesthetic (0.25% bupivacaine) and making a vertical 
incision in the skin over the skull, we made ~1-mm craniotomies in the 
skull at a predetermined distance from the bifurcation of a major blood 
vessel (the ‘Y sinus’; sBG: 43 degrees from horizontal head angle, 5.1 mm  
anterior, 1.6 mm lateral, sitch to 72 degrees, move 1.6 mm anterior,  
3.0 mm ventral from brain surface. This angle was used to avoid damage 
to the song nucleus LMAN. Using a glass pipette attached to a pressure 
injection system (Drummond Nanoject II), we gave bilateral injections 
of dextrans or virus (constructs specified below for each experiment). 
After injections, craniotomies were sealed with bone wax and the inci-
sion site in the skin was closed with a tissue adhesive (VetBond).

Miniscope imaging
Surgery. Using the surgical procedures described above, we induced 
the expression of genetic calcium indicators of neural activity in either 
HVC or sBG. To target our injections to the sBG, we mapped the anterior 
boundary of the nucleus as defined by the presence of high tonic activ-
ity. We then injected virus 400 µm posterior from the anterior boundary 
of the nucleus with 3 injection sites (2,950, 2,750 and 2,550 µm ventral, 
15 injections of 9.2 nl each, 10 min wait per site). Two viral strategies were 
used to infect sBG (AAV2/9.FLEX.CAG.GCaMP7f + AAV2/9 0.4 CamKII.
Cre, 6 birds; AAV2/9.CamKII.GCaMP7f, 2 birds). In the same surgery, a 
1-mm diameter prism gradient-index lens (Inscopix) was then slowly 
implanted (~5 µm s−1) at the identified anterior boundary of sBG, with 
the purpose of targeting our imaging plane 250 µm into the sBG. For 
HVC injections, birds received three 250 nl injections of lentivirus, 
containing a Rous sarcoma virus (RSV) promoter driven genetically 
encoded calcium indicator, GCaMP6f, into the song premotor cortex. 
This virus has been shown to have a strong tropism for excitatory neu-
rons with a preference for projection neurons13.

After waiting ~4 weeks for viral expression, a magnetic (Inscopix) 
or 3D printed baseplate was implanted on the bird’s skull to hold a 
miniature microscope13,40 for imaging. After a period of recovery (~3 d), 
birds were placed in a recording chamber and the miniature microscope 
was attached to the baseplate for imaging. The activity of sBG or HVC 
neurons was then imaged, and data were collected using either custom 
or commercial acquisition software (Inscopix) and synchronized with 
custom written software (synchronizing audio and frame times). The 
LED power was maintained between 0.12 and 0.24 mW mm−2. The maxi-
mum field of view was approximately either 900 µm × 650 µm or 700 × 
525 µm, Sound was sampled at 44 kHz and imaging data were sampled 
between 10 Hz and 30 Hz, corresponding to exposure times of 99.84 ms 
to 33.25 ms. To capture as many singing trials as possible, 30–60-s trials 
were automatically triggered via custom scripts to detect vocalizations.

ROI extraction and event detection. To extract regions of interest 
corresponding to putative neurons, we used an adaptation of the con-
strained non-negative matrix factorization approach (CNMF) for mini-
scope data41 (CNMF-E). This framework can reliably deal with the large 
fluctuating background in endoscopic data and the highly correlated 
patterns present in song-related areas. The following parameters were 
used for all our data, with slight variations across birds due to variability 
in signal quality: mean-subtracted 2D gaussian smoothing kernel (gSig) 
= 3–5 pixels, maximum soma diameter (gSiz) = 10–14 pixels, minimum 

pixel-to-noise ratio for seeding a neuron (PNR) = 6–8, minimum spike 
size (smin) = 5 and minimum local correlation: 0.85. These parameters 
were chosen to minimize the inclusion of neurons with weak SNRs.  
A ring model was used to estimate background signal for each neuron 
(ring_radius = 18 pixels), and a maximum spatial overlap of 0.75 was 
used for merging overlapping neurons. The noise level for each neuron 
was defined by subtracting the reconvolved calcium activity from the 
raw calcium activity (neuron.C_raw – neuron.C). This noise level was 
used to z-score all neurons’ activity. To detect calcium events, we used 
a binarized version of the inferred spiking events (neuron.S, all inferred 
events set to 1).

Female-directed song collection. One or two females were presented 
in a transparent plexiglass cage (~1 min per presentation). Females were 
presented regularly every ~45 min to collect female-directed song, and 
undirected song was collected in between presentations. Directed song 
was used for further analyses if it occurred with low latency (<20 s).

Speaker playback experiments. Songs were recorded from each bird 
in isolation. These recordings were amplified and low-pass filtered at 
10 kHz, and further bandpass filtered between 350 and 10,000 Hz for 
playback. A 10-ms ramp function was applied at the beginning and end 
of each stimulus using a cosine function (custom MATLAB, custom 
LabVIEW) to suppress acoustical transients. Stimuli were presented 
from a speaker located ~20 cm in front of the bird, and calibrated to a 
sound level similar to normal song performance (~20–30 song play-
backs per experiment).

Real-time auditory feedback experiments. We generated an acoustic 
template for online syllable detection that identified no less than 80% 
of the renditions of the targeted syllable with no more than a 10-ms 
jitter in detection onset. We then used this template to trigger a 25 ms 
burst of WN on 50% of identified syllables. ‘Catch’ and ‘hit’ trials were 
then pooled for the analyses shown.

Webcam video analyses. The bird’s position was measured using cus-
tom MATLAB codes (M. Ben-Tov, Technion University) that detected and 
tracked the centroid of the body position across video frames (Logitech 
webcam, 30 frames per second), and speed of movement was calculated 
as the change in position across pairs of frames. A threshold was then 
defined as the 80th percentile of the distribution of instantaneous 
velocities displayed by the bird over a 5-min period, and any crossings 
of >2 consecutive frames were designated as locomotion periods.

Song-triggered optogenetic inhibition
Adult male birds (age range 83–162 dph) were bilaterally injected 
sBG with a virus containing an archaerhodopsin construct (2/9.
AAV-CAG-ArchT-GFP or 2/1.AAV-CamKII-ArchT-GFP) or a control con-
struct (2/1 AAV-CamKII-GFP or 2/9 AAV-CAG-Cre-GFP). After waiting 
~21 days to allow for viral expression, 6 of the 12 birds (3 CAG, 3 CamKII) 
were tested for terminal field optogenetic responses in sBG with an 
optrode through which 50- to 500-ms pulses of light were delivered 
and neural activity was recorded simultaneously (Differential A-C 
Amplifier 1700, A-M Systems). All birds were then implanted bilaterally 
over sBG with either tapered fibreoptic ferrules42 (9 birds, Optogenix), 
or regular ferrules (3 birds, RWD). Craniotomies were then sealed 
with melted bone wax; ferrules were secured in place with MetaBond 
and then covered with a layer of VetBond. After birds recovered from 
anaesthesia under a heat lamp, fibreoptic cables (Thorlabs, 200-µm 
core, 0.37 NA) were connected to the newly implanted ferrules by 
ferrule sleeves. The other ends of the fibreoptic cables were attached 
to a two-channel optical commutator (FRJ_1×2i_FC-2FC, Doric), allow-
ing the bird to move about its cage freely. The commutator was then 
connected by a patch cable (Thorlabs) to a DPSS laser (BL473T3-100, 
Shanghai Lasers). After waiting 3–5 days for habituation and singing 



to start, a syllable template was designed that detected no less than 
90% of the renditions of the targeted syllable with no more than a 7-ms 
jitter in detection onset. This template was used to trigger delivery of 
a continuous pulse of green light (400–1,000 ms duration, 532 nm, 
8–15 mW emitted at each ferrule) to the sBG on a random 30% of tri-
als. On the same day, or in the following 1–3 days, a female zebra finch 
was presented intermittently (every 20–30 min, ~30 s per presenta-
tion) to collect directed song. Undirected song was collected for the 
same days. Upon ending the experiment, histology was performed, 
and only birds that had robust viral expression and accurate place-
ment of ferrules (taper approximately spanning the length of sBG, or 
blunt end near the dorsal edge of sBG). Exclusion of birds was blind 
to behavioural results.

Joint encoding VAE
Motif preprocessing. Song motifs were manually segmented. Spectro-
grams were taken as the log modulus of a short time Fourier transform 
(Hann windows, sample rate: 44.1 kHz, segment length: 512, overlap: 
384), manually scaled and clipped to an appropriate range. The spec-
trograms were then interpolated to 128 target frequencies linearly 
spaced between 0.4 and 8 kHz. Linear time warping was then performed 
on the spectrogram power time series (spectrograms summed over 
the frequency dimension, median absolute deviation-normalized) to 
account for tempo variation. More specifically, for each power time 
series f(t), a shift β0 and log inverse tempo value log β1 were optimized 
using Powell’s method with the following objective:
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with initial conditions β0 = log β1 = 0, where f(β0 + β1t) is defined by linear 
interpolation and ftarget is taken to be the average warped time series. 
This procedure was repeated, with ftarget being updated every itera-
tion and λ0 and λ1 slowly annealed to zero. Each spectrogram was then 
linearly interpolated to 128 warped target times using its associated 
warping parameters β0 and β1, resulting in 128-by-128 time-warped spec-
trograms. Spectrograms in Fig. 3, Extended Data Figs. 5, 6 are upsam-
pled by a factor of 3 using cubic spline interpolation for visualization.

Calcium preprocessing. After ROI extraction (described above), the 
raw calcium trace for each ROI was independently z-scored. For each 
song motif, a vector of ROI activities was calculated by averaging the 
raw calcium trace of each ROI from 300 ms before motif onset to 150 ms  
after motif offset.

Minimizing time confounders. To prevent our analysis from finding 
shared information between neural activity and vocal behaviour that 
is simply due to non-causal time-in-day effects such as photobleaching 
and diurnal changes in song, we iteratively removed the components 
of our calcium activity vectors and song spectrograms that could be 
reliably predicted by time. Specifically, we first used lasso to perform 
linear feature selection (predicting calcium activity vectors and spec-
trogram vectors from time in recording). More specifically, if xi(t) are 
the data, we performed

∑ ∑x t β t λ βmin ( ( ) − ) + | |
β t i i i i

2

with λ chosen manually for spectrograms and calcium activity. This 
allowed us to consider only elements of the data (spectrogram pixels 
or ROIs) that showed a clear linear dependence on time. After this, we 
performed a single kernel ridge regression43 that attempted to fit 

β x t∑ ( )i i i , the projection of the data along the axis learned in the first 
step, as a (potentially nonlinear) function of time (kernel bandwidth 
parameters chosen to maximize average test-set predictive perfor-
mance over seven folds of the data). Third, we removed these effects 

from the data, with the residuals used for subsequent analysis. We then 
repeated this procedure until the lasso regression produced the 
0-vector feature, indicating time was no longer able to explain training 
set variance.

Separate encoding models. For the separate VAEs encoding spec-
trograms and calcium activity, we used a standard VAE model14,15. If x 
denotes the data and y the learned latent variables with unit normal 
priors, we assumed:

∼ ∼y N I x N μ y I(0, ), ( ( ), ς )i i i i i

where i = 0,1 indicates neural or vocal modality, and μ is a nonlinear 
mapping parameterized by a neural network. We performed approxi-
mate inference in this network by assuming a posterior also defined 
by neural networks fμ i,

 and f σ i,2 :
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For the case of Gaussians, the normalization constant for this distri-
bution can be calculated analytically. The parameters of μi, fμ i,

, and 
f σ i,2  for i = 0,1 are optimized via stochastic gradient ascent to maximize 

the standard evidence lower bound (ELBO):
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where p is defined by the generative process and n = 1,…,N indexes 
motif number. This is equivalent to training two independent VAEs.

Joint encoding model. For the joint encoding model, we assume an 
additional global latent variable z that gives rise to the latent variables 
for each data type via linear map:

∼ ∼ ∼z N I y N A z σ I x N μ y I(0, ), ( , ), ( ( ), ς )i i i i i i
2

Again, we perform approximate inference, this time attempting to 
directly estimate the posterior over z given the data:

q z x N z I N z f x f x I( | ) ∝ ( ; 0, ) ( ; ( ), ( ) ).i i μ i i σ i i, ,2

As in previous work by Wu and Goodman44, we additionally define
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which combines evidence in our beliefs about z across the two modali-
ties using a product of experts construction. The parameters Ai, σ2, μi, 
fμ,i and fσ

2
,i for i = 0,1 are optimized to maximize:
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Note that this is the sum of three separate ELBOs, one joint neural/
vocal ELBO and two separate ELBOs, which reflects the multi-objective 
nature of joint encoding models.

Network and training details. The latent dimension was fixed at 32, as 
in a previous study4, and the same deep convolutional neural network 
architectures were used to parameterize the model and recognition for 
the vocal arm of the joint and separate encoding models. The neural 
arm model and recognition model were parameterized by two- and 
three-layer fully connected networks with ReLU activation, respectively. 
Approximate posteriors were restricted to the family of Gaussians 
with diagonal covariance. All parameters were optimized using Adam 
optimization with a learning rate of 0.001.
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Neural activity correlation versus VAE latent distance analysis
For each experimental session, a standard VAE was trained to model 
motif spectrograms, corrected for time-of-day trends (see ‘Minimiz-
ing time confounders’). Then, the collection of pairs of motifs was 
segregated by the similarity of the corresponding ROI activity vectors 
(see ‘Calcium preprocessing’). Specifically, each pair of motifs was 
sorted by the correlation of the corresponding ROI activity vectors. 
In Extended Data Fig. 5b, the cumulative distribution of VAE latent 
distances between pairs of motifs is plotted for several quantiles of 
ROI activity correlations for a single example session. In Extended 
Data Fig. 5c, the median VAE latent distance between pairs of motifs 
in each ROI correlation decile is calculated for each bird. For each 
experimental session, these median distances subtracted by their 
mean value are plotted in order to adjust for scale differences across  
birds.

Spectrogram and ROI contrasts. For each experimental session, a 
single joint encoding model was trained with a random 20/80 test/
train split for 300 epochs. The neural and vocal latent means were 
then inferred for each training datapoint using the modality-specific 
recognition models q(z | xi) for i = 0,1. Latent dimensions explaining 
negligible variance were discarded by transforming the latent means 
into their principal components and truncating at the number of latent 
dimensions needed to explain 99% of variance.

To verify that the trained model captured shared structure between 
the two latent spaces, we performed canonical correlation analysis 
to identify highly correlated axes in each latent space. We then used 
the individual encoders to infer z from each data type separately, per-
formed the same dimension reduction via principal component analy-
sis, and finally projected onto each identified canonical coordinate to 
produce scatterplots as in Fig. 3c. We report the correlation of held-out 
test data projected onto the pairs of canonical coordinates and esti-
mate significance by randomly shuffling the spectrogram–calcium 
activity pairing.

To visualize the effects of movement along these canonical coor-
dinates on ROI fluorescence and spectrograms, we created pairs of 
representative spectrograms as follows: First, we generated 160,000 
spectrogram–neural activity vector pairs using the trained model. 
These pairs were then weighted by their projected distance from the 
midpoint along the identified canonical coordinate axis, such that 
spectrograms farther from the midpoint were more likely to con-
tribute. Finally, we calculated and plotted weighted averages of the 
model-generated data using these weights to produce a summary of 
contrast along each axis.

Model performance comparison
For each experimental session, we split the data into seven random 
tranches for cross validation. For each training run, five of these tranches 
were used for training, one was used for hyperparameter selection for the 
VAE model, and the last was used for both test performance of the VAE 
model and for cross-validation of models that predicted vocal latents from 
neural latents and vice versa (Extended Data Fig. 5f). For each combination 
of model noises Σ Σ∈ {0.2,0.4}, ∈ {0.02,0.04},neural vocal and objective 
(predicting neural latents from vocal latents and vice versa), we trained a 
separate model, pausing every 10 epochs to evaluate our objective on the 
validation set. We trained for a maximum of 1,000 epochs and terminated 
a run if there was no improvement on the validation set objective in 200 
epochs. At the end of a set of runs, we used the first (VAE) validation set to 
identify the combination of Σneural, Σvocal, and training epoch that produced 
the best results. We report training performance as the corresponding 
results on the final test set. We report the average cross-validation test 
performance over the seven test tranches.

To assess the model’s ability to predict neural latents from vocal 
latents and vice versa, we used ridge regression (and also report kernel 

ridge regression in the supplement). We set the regularization param-
eter for this model using a leave-one-out cross-validation procedure 
on the second validation set: for each data point in the set, we selected 
the parameter value that produced the best fit on all but the selected 
data point and assessed performance on the single held-out data point. 
For a given multivariate latent Y, we calculated the average of the R2
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 across these data. We report the aver-

age cross-validation value of this metric over the 7 test tranches.

In vivo microdialysis
Custom-made reverse microdialysis probes were implanted into the 
sBG of adult birds. The probes were secured in place first using Meta-
Bond and then a coating of VetBond. Birds were then removed from 
the apparatus and recovered under a heat lamp. After recovery, birds 
were placed in a sound isolation box and left for two to three days until 
their singing rate recovered to normal levels.

For data collection, the following drug schedule was sequentially 
repeated for selected drugs: two days of saline, followed by one day of 
drug and then two days of saline. All infusions were done in the morning 
before cage lights came on. Analysis was restricted to a window up to 5 h 
after infusion. Drugs were washed out every day at 17:00, multiple drugs 
were used sequentially on the same bird until probes broke or failed. 
The following concentrations and drugs were used for behavioural and 
photometry experiments: SCH23390 (~5 mM), phentolamine (~5 mM), 
clonidine (1.5 mM) and muscimol (~1 mM).

Fibre photometry recordings
A three-channel multi-fibre photometry system (Neurophotometrics) 
was used for these experiments. In brief, light from three different 
wavelength LEDs (470 nm and 560 nm in phase, and 415 nm out of phase) 
were bandpass filtered and directed down a fibreoptic patch cord via a 
20× objective. This was coupled to a fibreoptic cannula implanted in the 
animal. Emitted GCaMP fluorescence was collected through the same 
cannula and patch cord (Doric MFP_200/220/900-0.37 FC_MF1.25), 
split by a 532 long pass dichroic, bandpass filtered, and focused onto 
opposite sides of CMOS camera sensor. Data were acquired using the 
open-source software Bonsai by drawing a region of interest around 
the two images (green and red) of the patch cord and calculating the 
mean pixel value. Both the blue and green channels were then median 
filtered with a window of four frames, and the blue channel was fit to 
and subtracted from the green signal using the Matlab polyfit function. 
Baseline fluorescence was defined as the average signal during a 60 s 
period of silence.

Dual photometry recordings in HVC and sBG
Following an injection of AAV2/9.hSyn.AxGCaMP6m into HVC, we 
waited ~28 days for axonal GCaMP expression. A second surgery was 
then performed in which the first photometry fibre was implanted 
dorsal to HVC to image local HVC axons, and the second was implanted 
in the ipsilateral sBG to image HVCsBG axons.

Simultaneous pharmacology and photometry recordings
Fibre photometry implants were placed in sBG, but a small 300 × 300 µm 
region of cranial surface was left exposed without metabond and cov-
ered temporarily with Kwik-sil. After waiting ~21 days for viral expression 
and observing song-related signals, a second surgery was performed 
in which a microdialysis infusion probe (described above) was low-
ered through the exposed region at a head angle of 43 degrees, 5.1 AP, 
1.45 mm ML, in order to avoid damaging LMAN, or displacing the sBG 
photometry fibre. In 4 out of 6 birds, 2 mM muscimol was infused to vali-
date stereotactic targeting and drug diffusion. For the experiments in 
Fig. 4d, e and Extended Data Fig. 7h, two birds were shared between the 
adrenergic and SCH23390 experiment. In an additional experimental 
session, one received noradrenaline and the other received clonidine.



In-situ hybridization
In situ hybridization was performed using hybridization chain reac-
tion (HCR v3.0, Molecular Instruments). Dissected brain samples 
were post-fixed overnight in 4% PFA at 4 °C, cryoprotected in a 30% 
sucrose solution in RNAse-free PBS (DEPC-PBS) at 4 °C for 48 h, frozen in 
Tissue-Tek OCT Compound (Sakura), and stored at −80 °C until section-
ing. Eighty-micrometre-thick coronal floating sections were collected 
into a sterile 24-well plate in DEPC- PBS, and fixed again briefly for 5 min 
in 4% PFA. Sections were rinsed in DEPC-PBS, incubated for 45 min in 
5% SDS in DEPC-PBS, rinsed and incubated in 2× SSCT, pre-incubated in 
HCR hybridization buffer at 37 °C, and then placed in HCR hybridization 
buffer containing RNA probes overnight at 37 °C. The next day, sections 
were rinsed 4 × 15 min at 37 °C in HCR probe wash buffer, rinsed with 
2× SSCT, pre-incubated with HCR amplification buffer, then incubated 
in HCR amplification buffer containing HCR amplifiers at room tem-
perature for ~48 h. On the final day, sections were rinsed in 2× SSCT, 
rinsed again with 2× SSCT, then mounted on slides and coverslipped 
with Fluoromount-G (Southern Biotech). After drying, slides were 
imaged on a Zeiss inverted 710 laser scanning confocal microscope.

Fos measurements in LC, sBG and HVC
To minimize off-target Fos mRNA detection, birds were perfused 30 min 
after cage lights first turned on in the morning. For directed singing, 
4–5 females were presented sequentially over 30 min to maximize motif 
amounts. Live video was monitored to ensure no significant undirected 
(facing away from the female, disengaged) singing occurred during 
female presentations. To enforce the silent condition, the sound booth 
door where the cage resides was left open, which has previously been 
noted to effectively suppress singing3. For the undirected condition, 
birds were allowed to sing freely in the morning for the 30-min window. 
Lights were then turned off and birds were immediately perfused.

For each bird, a ~25-µm-thick z-stack (~0.85-µm optical slices, 
350 × 350 µm) encompassing locus coeruleus was collected at 40× 
power to accurately visualize Fos signal, along with VGAT and TH chan-
nels. All image processing was done with ImageJ. First, all channels were 
noise-subtracted (20 µm rolling-ball radius), and VGAT and TH chan-
nels were smoothed, automatically thresholded (Otsu method), and 
converted to a binarized mask. The mask was then transferred to the 
Fos channel, which was then also thresholded. Fos particles within each 
mask were then quantified for intensity and total area (expressed as a 
fraction of the VGAT or TH masks). For VGAT quantification, a bounding 
rectangle was manually drawn around the LC TH-positive signal, and 
only the VGAT signal within that area was used for masking. For HVC and 
sBG measurements, the mean intensity value of an entire 60-µm-thick 
z-stack (20× power, taken in the center of the sBG or HVC) was used.

Whole-cell recordings
Birds (65–120 dph) were deeply anaesthetized with isoflurane and were 
used to prepare 250 µm thick coronal slices. A subset of birds received 
injections 2–3 weeks prior of an AAV encoding a fluorescent reporter 
under the CamKII promoter in order to label MSNs. The brain was dis-
sected in ice-cold artificial cerebrospinal fluid (ACSF) containing the 
following (in mM): 119 NaCl, 2.5 KCl, 1.30 MgCl2, 2.5 CaCl2, 26.2 NaHCO3, 
1.0 NaHPO4-H2O and 11.0 dextrose, and bubbled with 95% O2, 5% CO2. The 
brain was mounted on an agar block and sliced in ice-cold ACSF with a 
vibrating-blade microtome (Leica). Slices were incubated for 15 min at 
32 °C in a bath of NMDG recovery solution containing the following (in 
mM): 93.0 NMDG, 2.5 KCl, 1.2 NaH2PO4, 30.0 NaHCO3, 20.0 HEPES, 25.0 
glucose, 2.0 thiourea, 5.0 sodium l-ascorbate, 2.0 sodium pyruvate, 
10.0 MgSO4 7 H2O, 0.5 CaCl2 and 95.0 HCl. Slices were then moved to a 
bath of ACSF as above and allowed to gradually reach room tempera-
ture over the course of 30 min, where they remained for the duration. 
Recordings were performed in ACSF at a temperature of 32 °C. For cur-
rent clamp experiments patch electrodes (7–10 MΩ) were filled with 

potassium gluconate internal solution containing the following (in mM): 
124 potassium gluconate, 4 NaCl, 10 HEPES, 2 EGTA, 2 MgCl2, 2 Mg-ATP 
salt 0.3 Na-GTP salt and 10 sodium phosphocreatine. Neurons were 
targeted using interference contrast and epifluorescence to visualize 
fluorescent indicators (GFP or tdTomato) previously expressed via viral 
injection. Recordings were made using a Multiclamp 700B amplifier 
whose output was digitized at 10 kHz (Digidata 1440A). Liquid junction 
potential was measured at (+5 mV) and was not compensated. The drugs 
used (20 µM noradrenaline, 10 µM phentolamine (Sigma-Aldrich)) were 
added to the ACSF and perfused onto slices. Pharmacological agents 
were bath applied for 10 min before making recordings. Signals were 
analysed using Igor Pro (Wavemetrics). Spike threshold was defined 
as the first 500-ms current step (in 25-pA increments) that elicited one 
or more spikes in the baseline condition. Input resistance was defined 
as the slope of the regression line fitted to the current–voltage curve 
at membrane potentials more negative than −50 mV, as described 
previously45. Sag ratio was defined as the difference between the peak 
deflection at the beginning of a hyperpolarizing current injection and 
the resting membrane potential divided by the difference between the 
steady state potential reached after a hyperpolarizing current injection 
and the resting membrane potential. A sag ratio of 1 therefore indicates 
no sag, while a value greater than 1 indicates the presence and degree of 
sag. The 10–90% rise time of the membrane response to a hyperpolar-
izing current injection was calculated as the time (in ms) needed for the 
membrane potential to go from 10% to 90% of the difference between the 
resting membrane potential and the potential after current injection.

Specificity and sensitivity
To compute a single neuron’s specificity (true negative rate) and sensi-
tivity (true positive rate), we first defined a window of −1 s to +1 s around 
each bout. A bout is defined as continuous periods of song with no 
inter-syllable pauses longer than 100 ms. Bouts were only selected if they 
were flanked by two or more seconds of silence. After extracting these 
singing windows, we found an equal amount of equivalent windows for 
periods of silence (2 s window of silence flanked by at least 4 s of silence) 
and computed the following for each identified neuron, where a song 
where a neuron ‘participated’ is defined by the presence of an inferred 
spiking event (neuron.S, see ROI extraction and event detection).

Sensitivity = no. of participated song windows/no. of total song 
windows

Specificity = no. of non-participated silence windows/no. of total 
silence windows

All-to-all correlation coefficient
To determine how stable each neuron’s response time course is over 
different songs, we computed all pairwise Pearson correlations for each 
individual neuron’s active trials. We then calculated the median of this 
distribution for each neuron, which were combined across birds and 
plotted as in Extended Data Fig. 1b–d.

Shared population between trials
To better understand how the identity of the song-related neural ensembles 
varied over song renditions, we calculated the list of active neurons for any 
given pair of songs as defined by the presence of an inferred event. We then 
determined what fraction of this total list was active during both songs, and 
repeated this procedure for every pair of trials. All pairwise comparisons 
were then combined across birds and plotted in Extended Data Fig. 1d.

Pitch variability
The percent variability in the pitch of a given syllable was calculated by 
measuring the pitch of the entire small stable component (>15 ms) of 
the target syllable. The standard deviation was then computed, divided 
by the average cross-rendition pitch, and multiplied by 100 to get a per 
cent variability measure. Only renditions performed 30 min after drug 
infusion and up to 5 h after were used for further analyses.
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Calcium event-triggered average spectrogram
To generate the colour-coded event-triggered spectrogram averages 
(Extended Data Fig. 2c), we collected, for each neuron, all events (bina-
rized inferred spikes) across the entire time series of concatenated 
calcium videos (time-series durations ranged between 10 and 30 min 
per bird), regardless of whether the event happened during or outside 
of song.

Statistics and quantification
Data are presented as the mean ± s.e.m. One-way repeated measures 
ANOVAs were corrected for sphericity (Greenhouse–Geisser) to ensure 
accurate P values. P values of 0.05 or below were considered significant. 
Star values as: *P < 0.05, **P < 0.01, ***P < 0.001. No statistical methods 
were used to predetermine sample size. The experiments were not 
randomized and the investigators were not blinded to allocation dur-
ing experiments and outcome assessment.

Mixed-effects models
For all data in which multiple syllables were collected from the same 
bird and pooled we used linear mixed effects models to account for 
the hierarchical dependencies in the data. Specifically, we accounted 
for correlations between measurements that were sampled from the 
same bird by including a random effect term for drug or laser condition 
grouped by bird ID, as well as a random effect term for syllable ID. Fixed 
effect coefficient ± standard error, confidence intervals and P values 
are reported in Supplementary Tables 1, 2.

Outlier and experiment inclusion criteria
We excluded acoustic measurements that exceeded 4 × s.d. of a given 
dataset, as well as measurements where pitch could not be computed 
reliably. These criteria served to remove erroneous measurements 
resulting from faulty segmentation and cage noise. Cut-off for mini-
mum number of song renditions varied by experiment type owing 
to the different challenges in obtaining singing data for each experi-
ment. Minimum cut-offs were as follows: for miniscope imaging of 
undirected-only days, 30 undirected bouts; for miniscope and photom-
etry imaging of undirected and directed songs, 10 bouts; for optoge-
netic experiments, 100 catch bouts, and 30 laser-stimulated bouts; for 
microdialysis experiments, 50 undirected bouts, 15 directed bouts; 
and for simultaneous microdialysis and photometry experiments,  
10 bout initiations per condition.

For all analyses in Fig. 1 and Extended Data Fig. 1, each song was selected 
to have the same core motif structure (for example, ‘abcd’), and a window 
of −1 s to +1 relative to song onset was selected for further analyses. For 
each bird, data used for any given plot were collected within a single day.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Core datasets have been posted to the Duke University Library Research 
Data Repository (https://research.repository.duke.edu). Source data 
are provided with this paper.

Code availability
Custom code and software are available at https://github.com/pearson-
lab/autoencoded-vocal-analysis and https://github.com/pearsonlab/
finch-vae.
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Extended Data Fig. 1 | Targeting and characterization of SN activity.  
a) CaMKII promoter strategy selectively labels SNs in the sBG. Left: Overlap  
of CaMKII-GCaMP and the SN marker DARPP-32. Middle: Superimposed image 
reveals no overlap between retrogradely labeled globus pallidus internus 
neurons and CaMKII-GFP (0/41 Tracer(+) neurons were co-labeled with GFP,  
n = 2 birds).  Right: Superimposed images reveal almost no overlap between 
parvalbumin (PV) and CaMKII-GFP (5/251 PV(+) neurons were co-labeled with 
GFP, n = 2 birds). Scale bars = 100µm. b) Specificity and sensitivity of HVC PNs 
and sBG SNs. c) Median autocorrelation for all recorded SNs and HVC PNs 
(median HVC autocorrelation: 0.71, SNs: 0.16). d) Shared fraction of active 
ensemble for SNs and HVC PNs across song renditions (median HVC shared 
fraction: 0.86, SNs: 0.28). For (b–d), SNs: n = 529 neurons from 7 birds, HVC:  
n = 165 neurons from 5 birds. e) Example of mean SN activity aligned to body 
velocity; orange shading denotes singing periods.  Data are displayed as  
mean + s.e.m. f) Detected movement initiations (1311 detected initiations from 
1 recording session, top) aligned to SN activity from photometry recordings 

(bottom). g) Group data comparing mean SN activity during singing vs. non- 
singing locomotion (Student’s one-sided paired t-test, t3=2.464, *p = 0.0453;  
n = 4 birds). h) Group data comparing mean SN activity during singing vs. 
playback of the bird’s own song (Student’s one-sided paired t-test; t3= 3.31,  
*p = 0.0226; n = 4 birds). i) Disrupted auditory feedback during singing does not 
acutely affect SN activity. A random 50% of song renditions were targeted for 
syllable-triggered white noise (top). Participation probability was not affected 
by the playback of white noise (Student’s two-sided paired t-test; p = 0.91;  
n = 184 neurons from 3 birds). j) Example traces shown for 4 SNs comparing 
activity during normal singing and during singing-triggered noise. t = 0 
denotes target syllable onset, dashed line is white noise onset. Only song 
renditions in which the cell participated were included. 0/184 neurons were 
found to be significantly modulated by white noise (two-sided Mann-Whitney 
U-test with Hochberg correction, 0/184 significantly modulated neurons from 
3 birds). All error bars denote mean + s.e.m.
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Extended Data Fig. 2 | Example song-related SN activity. a) Representative 
motif spectrogram (top) aligned to sample activity traces from the first 6 
undirected song renditions for 5 ROIs, aligned to song motif onset (vertical 
dashed line; a-g, syllables; i, introductory notes). b) Same representative motif 
as (a), with activity heatmaps for all 171 trials collected throughout the day, 
along with the corresponding values for all-to-all correlation and sensitivity. 

Color scale represents z-scored fluorescence. c) Fluorescence trace for one 
neuron showing two example calcium events (top). Event-triggered probability 
of song syllable for the 5 neurons (bottom, see methods). All detected calcium 
events in the time series (27.7 minutes of concatenated recordings, 4.9 minutes 
with vocalizations) were used to generate the average spectrogram, which is 
visually represented in terms of the probability of occurrence for each syllable.



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Supplemental analyses of song, movement, and 
neural activity during directed and undirected song. a) Example frequency 
contours of syllable ‘d’ in undirected (blue) and directed (red) renditions.  
b) Birds with head-mounted miniscopes exhibit typical directed song features 
in addition to decreased pitch variability, such as faster directed motifs. Left: 
Cumulative distribution plot for motif durations in 1 bird. Right: group data for 
6 birds (Student’s two-sided paired t-test, t5 = 1.87 p = 0.12, n = 6 birds). 
c) Directed motifs are preceded by more introductory notes than undirected 
motifs. (Student’s two-sided paired t-test, t5 = −7.69, ***p = 0.00094, n = 6 
birds). d) Top: mean activity of 53 ROIs during directed and undirected singing 
from one bird. Bottom: mean SN population activity aligned to song onset. 
e) Heatmap of mean population activity for interleaved undirected and 
directed singing. Dashed line = onset of first syllable in motif. f) Left: Mean 
z-scored activity in undirected and directed conditions, plotted for all ROIs 
that were collected in directed and undirected conditions, averaged across all 
collected songs Right: Similar to left, but using only trials in which each neuron 
had a detected event (n = 215 neurons from 6 birds).g) Relationship between 

ROI signal (peak of averaged active trials) and the ratio between its directed 
and undirected activity (n = 215 neurons from 6 birds). Dashed line indicates no 
modulation (D/U = 1). h) Photometry (top) and velocity (bottom) color-
matched traces aligned to undirected (n = 13) and directed (n = 11) songs. 
Dashed line indicates the onset of the first motif syllable. i) R values between 
average locomotion during song (500 ms time window) and DF/F for one bird, 
computed from data in (h) (f). j) Left: Group data showing R values comparing 
average song-related neural activity to movement in two conditions: averaging 
locomotion values over a window of 500 ms before motif onset (pre-song) or 
500 ms after motif onset (during-song). Right: Corresponding p values. 
k)  Representative histology of photometry recordings. Left: Histology of AAV 
2/9 AxGCaMP6m.p2a.nls.tdTomato injection into HVC. Middle: HVC axons in 
sBG from the same bird.  Right: Local injection of AAV 2/9.CaMKII.GCaMP6s 
into sBG. Scale bar = 50 µm. l) Sample recording session for dual recordings 
from HVC and HVCsBG axons. Undirected singing, (blue) female presentation 
and directed singing (red) are collected in the same session. m) Same as (l), but 
for SN photometry. All error bars denote mean + s.e.m.



Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Additional analyses of optogenetic suppression 
experiments. a) Experimental approach with representative histology from a 
CAG.ArchT injection into the sBG, both shown in sagittal view. b) Optrode 
recording in a CAG-ArchT bird showing suppressive  effect of green light 
illumination  on spontaneous action potential activity of a single sBG unit.  
c) Group data showing suppressive effects of green light illumination across 
neurons (CamKII, 5 neurons, CAG, 5 neurons). d) Sagittal schematic for 
coinjections of Pan-neuronal (CAG) and SN (CaMKII) fluorescent proteins  into 
the sBG. e) CAG-driven expression of TdTomato (magenta) and CaMKII-driven 
expression of GFP (green) shown superimposed in the sBG (left) and in separate 
green (middle) and magenta (right) channels in the pallido-recipient thalamic 
nucleus DLM. Scale bar = 250 µm. f) Experimental approach for syllable-
triggered optogenetic inhibition.   g) Group data showing pitch variability 
during directed and laser-stimulated singing normalized to undirected 
singing for pan-neuronal inhibition. Mixed effects model, 2-sided permutation 
test. Laser effect size (relative to baseline: -17.8%, ***p = 0.0011, n = 14 syllables 
from 6 birds. Directed singing effect size: 13.8%, *p = 0.01, n = 12 syllables from  
5 birds.h) Pitch variability group data (same data as Fig. 2j and Extended Data 
Fig. 4g), non-normalized, comparing values during undirected song versus 
either undirected + laser (L) or directed (D) conditions. i) Intrasyllabic 
variability data normalized to undirected levels. Mixed effects, 2-sided 
permutation test. Model fit to non-normalized data, comparing undirected 
and experimental (undirected + laser (green), or directed (red)) conditions  
(for model output details, see Tables 1 and 2 in Supplementary Information for 
model details, in all cases significance was assessed using a two-sided 
permutation test). Pan-Neuronal: Estimated laser effect size: −0.00071 
(−10.11% of baseline) + 0.0002, *p = 0.015. Estimated directed singing effect 
size: -0.0013 (-20.65%) + 6.94, **p = 0.0098. SNs: Estimated laser effect size: 
−0.00034 (-4.09%) + 0.00011, **p = 0.007.  Estimated directed singing effect 

size: -0.0033 (−22.18%) + 0.00063.  GFP: Estimated laser effect size: −0.000054 
(0.60%) + 0.00043, p = 0.80. Estimated directed singing effect size = −0.0027 
(−36.00%) + 0.00050, ***p = 0.000082. Pan-neuronal Laser n = 14 syllables 
from 6 birds, directed n = 12 syllables from 5 birds; SNs: Laser n = 16 syllables 
from 6 birds, directed n = 12 syllables from 5 birds; GFP: Laser n = 15 syllables 
from 5 birds for laser, directed n = 10 syllables from 4 birds. j) Mean syllable 
frequency group data normalized to undirected levels. Pan-Neuronal: 
Estimated laser effect size: 3.55 + 3.14 Hz, p = 0.27. Estimated directed singing 
effect size: 9.91 + 6.94 Hz, p = 0.17. SNs: Estimated laser effect size: - 8.28 + 4.54 Hz,  
p = 0.079.  Estimated directed singing effect size: −13.95 + 9.13 Hz, p = 0.14.  GFP: 
Estimated laser effect size: 0.60 + 0.37 Hz, p = 0.12. Estimated directed singing 
effect size = 3.041 + 2.46 Hz, p = 0.23. Pan-neuronal laser n = 14 syllables from  
6 birds, directed n = 12 syllables from 6 birds; SNs: Laser n = 16 syllables from  
6 birds, directed n = 12 syllables from 5 birds; GFP: Laser N = 15 syllables from  
5 birds for laser, directed n = 10 syllables from 4 birds. k) Mean syllable duration 
group data normalized to undirected levels. Pan-Neuronal: Estimated laser 
effect size: -0.58 + 0.23 ms, *p = 0.016. Estimated directed singing effect size: 
−0.65 + 0.28 msec, *p =0.035. SNs: Estimated laser effect size: -0.82 + 0.36 ms, 
**p = 0.029. Estimated directed singing effect size −2.76 + 0.62 ms,  
***p = 0.00016.  GFP: Estimated laser effect size: -0.84 + 0.63 ms, p = 0.19. 
Estimated directed singing effect size = −4.37 + 0.80 ms, ***p = 0.000030.  
Pan-neuronal: Laser N = 14 syllables from 6 birds, directed N = 12 syllables from 
6 birds; SNs: Laser N = 16 syllables from 6 birds, directed n = 12 syllables from  
5 birds; GFP: Laser n = 15 syllables from 5 birds for laser, directed n = 10 syllables 
from 4 birds. Data are displayed as mean + sem. All error bars denote mean + 
s.e.m. Pan-neuronal: Laser N = 14 syllables from 6 birds, Directed N = 12 syllables 
from 6 birds; SNs: Laser N = 16 syllables from 6 birds, Dir N = 12 syllables from  
5 birds; GFP: Laser N = 15 syllables from 5 birds for laser, Dir N = 10 syllables from 
4 birds. Data are displayed as mean + sem. All error bars denote mean + s.e.m.
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Extended Data Fig. 5 | Joint encoding model details and comparison to 
alternate models. a) Schematic for learning low dimensional latent features of 
motif spectrograms using a variational autoencoder (VAE) approach. The 
model learns a compressed representation of the data that is sufficient to 
reconstruct the original. b) Cumulative distribution of pairwise song distances 
in VAE latent space, grouped by the similarity of the associated neural patterns 
(neural correlation percentiles, yellow to blue). For more dissimilar neural 
activity (yellow), songs are farther apart in VAE space, while more highly 
correlated neural activity (blue) shifts the distribution to the left, implying 
overall more similar songs, as indicated by smaller VAE vocal latent distances. 
c) Group data showing median VAE distance (relative to the mean) within each 
neural correlation decile for all 7 sessions from 5 birds; pairs of trials with highly 
correlated neural activity patterns are closer in VAE latent space. Marker shape 
denotes bird identity. d) Schematic of the joint modeling approach. Acoustic 
data is modeled using a VAE as before (boxed region) and a second VAE is used 
to model the neural data. A global latent variable is then used to capture shared 
variation in the two modalities. e) Schematic of model training and validation. 
VAE models were trained using sevenfold cross-validation. Within each fold, 
data were partitioned into seven tranches, five for VAE model training 
(magenta), one for VAE model validation and hyperparameter selection (cyan), 
and one for assessing model performance (yellow). For the VAE model, average 
performance on the yellow test set across the seven cross-validation folds is 
reported. For predictive models trained to predict one set of latents from 
another, a “leave-one-out” strategy on the yellow data set (right) was used to 
select predictive model hyperparameters and assess performance. f) Joint 
encoding outperforms a collection of control models. The shuffle control 
randomly pairs spectrograms and ROI activity vectors. The time control uses 
time-in-session to predict the joint encoding model’s neural latents (left) and 
vocal latents (right). The linear model comprises independently trained neural 

and vocal variational autoencoders (as in Fig. 3a without the global latent), with 
emission and recognition networks restricted to linear mappings. The separate 
encoding model comprises independently trained neural and vocal variational 
autoencoders with emission and recognition models parameterized by deep 
neural networks. The joint encoding model is the full model as presented in 
Fig. 3a. For all models, prediction is performed using ridge regression and test 
performance is evaluated using the cross-validation procedure described in 
Methods. Average test set performance over 7 cross-validation folds of each of 
7 sessions from 5 birds is shown. Each line represents a single bird-session.  
g) Model comparison split by experimental session. Performance (measured 
by R2) for the task of predicting vocal latents from neural latents (top) and vice 
versa (bottom) for each of 7 sessions from 5 birds. In addition to the models 
presented in b, the comparison includes models using motif tempo to predict 
joint encoding neural latents (top) and vocal latents (bottom); using kernel 
ridge regression in place of linear ridge regression (with leave-one-out 
regularization strength and radial basis function bandwidth selection); and a 
version of the joint encoding model with emission and recognition networks 
restricted to linear mappings. Joint encoding predictive performance is 
compared with each control model for each experimental session (one-sided 
Wilcoxon signed-rank test, * denotes p <0.05). For both imaging sessions of one 
bird (bird 5, denoted by triangles in panels b–d), both neural latents and vocal 
latents could be robustly predicted from song tempo. h) Left: Predictive 
performance versus number of song motifs (left) for each of 7 experimental 
sessions. Poor predictive performance is observed for experimental sessions 
with fewer than 300 motifs and fewer than 50 ROIs (not shown). Symbols 
denote birds, as in panels b and c. Right: Similar to left. Opaque markers 
indicate performance using only first motifs in each bout, faded markers 
performance indicate performance using all motifs.
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Extended Data Fig. 6 | Joint encoding model preprocessing and additional 
examples. a) To minimize time confounders, components of calcium activity 
vectors (top left) and spectrograms (top middle) that could reliably be 
predicted by time-of-day were removed (red lines; see Methods). The calcium 
and spectrogram residuals after prediction are used for further analysis in 
place of the original data (top right). Positive weights are shown in green and 
negative weights in magenta. Note that the effects are restricted to regions 
with vocalization. For two example spectrograms from 10:15 (bottom left) and 
10:35 (bottom middle), time-of-day correction makes the resulting syllables 
more similar to one another. Scale bar for right column: 100 ms. b) Left: Despite 
time warping, spectrograms show consistent tempo-related changes. 
Difference plot between the average faster-than-median spectrograms and the 
average slower-than-median spectrograms (bottom, positive values in green, 
negative in magenta) for one example bird (Bird 3, squares). The consistent 
horizontal bands throughout the motif indicate upward pitch shifts associated 
with faster tempos, which were observed for almost all experimental sessions. 
Scale bars denote 100 ms. Right: Both ensemble activity and warped 
spectrograms contain information about tempo. For each experimental 
session, tempo can be predicted from ensemble activity vectors (blue) and 
spectrograms (red) after both signals have been corrected for time-of-day. 

Dotted line denotes chance performance. Scale bars denote 100 ms.  
c) Spectrograms also show consistent motif-number-related changes. For the 
same example bird as in b, the average of the first motifs in every bout and the 
average of all other motifs exhibit clear differences (bottom, positive values in 
green, negative in magenta). Right: Both ensemble activity and time-warped 
spectrograms contain information about motif number. For each experimental 
session, motif number (first motif vs. rest) could be reliably predicted from 
ensemble activity vectors (blue) and spectrograms (red) using the same 
procedure described for tempo prediction (reporting test accuracy, weighted 
by class so that chance performance is 0.5). Dotted line denotes chance 
performance. Scale bars denote 100 ms. d) Example average ROI activity 
aligned to the first syllable of bouts consisting of 1, 2, 3 or 4 motifs. Note that 
ROIs 20 and 21 display qualitatively different activities in bouts of different 
lengths. e) Weighted average generated spectrograms and ROI activity pairs, 
with weights given by their projection along the correlation axis, describe how 
song spectrograms (middle column) and neural activity (right column) vary 
together. P-values refer to corresponding correlations of held-out test data, as 
in Figure 3c. Scale bars for left and middle columns: 100 ms. Scale bars for right 
column: 250 µm.
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Extended Data Fig. 7 | Effects of adrenergic signaling manipulations on 
song and neural activity. a) Retrograde labelling of dopamine beta 
hydroxylase (DBH) and tyrosine hydroxylase (TH) positive cell bodies in the 
locus coeruleus (LC) and ventral tegmental area (VTA), respectively, following 
retrograde tracer injections into the sBG.  Scale bar = xx microns and applies to 
both panels. b) SCH, PHE, and CLON infusion do not significantly affect singing 
rates (Student’s two-tailed paired t-test, CLON: t5 = 0.81, p = 0.46, n = 6 birds; 
PHE: t7 = 0.97, p = 0.28, n = 8 birds; SCH: t7 =1.17, p = 0.36, n = 8 birds). c) SCH, PHE, 
and CLON infusion do not significantly affect number of introductory notes 
per bout (Student’s two-tailed paired t-test, CLON: t5 = −0.16, p = 0.88, n = 6 
birds; PHE: t7 = 1.05, p = 0.33, n = 8 birds; SCH: t7 = 0.91, p = 0.30, n = 8 birds).  
d) Left: Effects of PHE on pitch variability in directed and undirected song. 
Mixed effects model, 2-sided permutation test, see Tables 1 and 2 in 
Supplementary Information for model details. Estimated effect of drug 
presence on directed: 0.36 (26.1% of baseline) + 0.17, *p = 0.02. Estimated effect 
of drug presence on undirected: −0.14 (6.7% of baseline) + 0.12, p = 0.24. 
Middle: Effects of CLON on pitch variability in directed and undirected song. 
Estimated effect of drug presence on DIR: −0.025 (1.5% of baseline) + 0.10,  
p = 0.1. Estimated effect of drug presence on UNDIR: −0.36 (14.8% of baseline)  
+ 0.12, **p = 0.0049. Right: Effects of SCH on pitch variability in directed and 
undirected song. Estimated effect of drug presence on directed: 0.081 (4.9% of 
baseline) + 0.22, p = 0.71. Estimated effect of drug presence on undirected: 
0.048 (2% of baseline) + 0.84, p = 0.57. e) Representative histology showing 
photometry probe and microdialysis probe placement into sBG for 
simultaneous drug delivery and photometry. Scale bar = 100 µm.  

f) Representative DF/F measurements during directed and undirected singing 
for one bird before and after (>1 hour) beginning muscimol infusion.  
g) Muscimol infusion suppresses calcium signals recorded in the sBG during 
both directed and undirected singing (Student’s two-tailed paired t-test;  
t4 = 3.63, p-values are indicated; n = 5 birds). h) Sample traces for SN imaging 
during infusion of SCH23390 into the sBG. i) Group data showing mean SN 
photometry signals during SCH23390 infusion in undirected and directed 
conditions (n = 4 birds). j) DARPP32 and α2c-AR mRNA co-expression sBG SNs 
(n = 3 birds). Scale bar = 20 µm. k) Low power confocal images showing Fos 
mRNA expression in a sagittal section of the finch brain across behavioral 
conditions. Dashed white outlines highlight the sBG and HVC. l) Fos intensity 
levels in HVC and the sBG plotted against motif count (30-minute window) in 
either directed (red) or undirected (blue) singing conditions. For all immediate 
early gene experiments, undirected n =   6 birds, directed n = 7 birds, silent n = 6 
birds. m) Example confocal image z-stack collected in the LC. The intensity and 
area of Fos puncta (magenta) were quantified within the TH-positive mask 
(yellow).  Scale bar = 50 µm. n) Mean Fos intensity and area within LC TH mask 
plotted against for directed (red) and undirected (blue) motif counts. o) Group 
data for Fos intensity (left) or area (right) plotted for TH and VGAT masks 
during either directed (red, N = 7 birds) or undirected (blue, N = 6 birds) singing 
conditions. One-way ANOVAs with post hoc Tukey tests were performed 
separately for TH and VGAT masks under each condition. Post hoc comparisons 
for significant ANOVAs are displayed. Fos mRNA puncta Intensity: TH mask, 
F(2,16) = 7.46, **p = 0.0051, VGAT mask, F(2,16) = 7.4, **p = 0.0053.  Fos mRNA Area: 
TH mask, F(2,16) = 9.02, p = 0.0024, VGAT mask, F(2,16) = 3.6, p = 0.051.



Extended Data Fig. 8 | Effects of adrenergic signaling on SN excitability. 
a) Rise time, sag, and resting membrane potential can be used to distinguish SNs 
from non-SNs in the sBG (see Methods). b) Three more example SNs recorded 
during baseline, NA, and PHE. c) Effect of NA and PHE on SN resting membrane 
potential (One-way repeated measures ANOVA with Greenhouse-Geisser 
correction. F(1.487, 16.36) = 0.5950 p = 0.51; n = 11 cells). d) Effect of NA and PHE on SN 
input resistance (One-way repeated measures ANOVA with Greenhouse-Geisser 
correction and post-hoc Tukey test. F(1.229, 13.52) = 7.980; Baseline vs NA: p = 0.054; 

NA vs PHE: ***p = 0.0003; n = 11 cells). e) 2 example SNs recorded during baseline 
and PHE, from a different experiment than a–d. f) F-I curves showing increased 
action potentials in response to positive current injection for baseline and PHE 
conditions (n = 12 cells). g) Effect of PHE on SN resting membrane potential 
(Student’s two-tailed paired t-test, t10 = 0.55, p = 0.59; n = 11 cells, separate from 
those shown in panel c). h) Effect of PHE on SN input resistance (Student’s 
two-tailed paired t-test, t10 = 5.42, ***p = 0.0003; n = 11 cells, separate from those 
shown in panel d).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection For miniscope recordings, software by Inscopix (NVISTA HD) was used in combination with MATLAB (MathWorks) to acquire calcium imaging 
data. For photometry recordings, Bonsai (open-ephys) was used to collect webcam video, audio, and calcium signals. For image collection 
with a confocal microscopy, ZEN software version 3.3 (Zeiss) was used.  Custom LABVIEW code was used to collect singing data in optogenetic 
and microdialysis experiments.

Data analysis Autoencoded Vocal Analysis (v0.3), the Python package used to generate and warp spectrograms for the VAE analysis, is freely available 
online: https://github.com/pearsonlab/autoencoded-vocal-analysis". For image analysis, ImageJ with Fiji version 2.1.0/1.53c (https://fiji.sc/) 
was used. For other data analysis and generation of figures, custom scripts and functions in MATLAB  were used.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

We are in the process of mounting core data on the Research Data Repository, a service managed by the Duke University Libraries (https://
research.repository.duke.edu).
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample-size estimation was performed beforehand. Our sample sizes were determined based on sample SD in the earlier sets of 
experiments, and largely conform to convention in the field (Hisey E, Kearney MG, Mooney R. A common neural circuit mechanism for 
internally guided and externally reinforced forms of motor learning. (Nat Neurosci 2018; 21: 589–597.  Liberti WA 3rd, Markowitz JE, Perkins 
LN, Liberti DC, Leman DP, Guitchounts G et al. Unstable neurons underlie a stable learned behavior. Nat Neurosci 2016; 19: 1665–1671.).

Data exclusions Experiments with unsuccessful surgery, injection, implantation, and expression were excluded from the data. 

Replication The results are based on behavior and recordings from multiple birds and multiple neurons (as 
described in the text) and the reproducibility of the findings are shown in the scatter plots and other accompanying figures.

Randomization Animals were randomly allocated into experimental groups.

Blinding No blinding was performed because longitudinal experiments in individual birds, each with unique songs, rendered blinding difficult to 
perform.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms
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Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Rabbit primary antibody for TH (AB152; MilliporeSigma). Rabbit primary antibody for DBH (22806; ImmunoStar).  Mouse primary 

antibody for GFP (A11120; Thermofisher). Anti-rabbit secondary antibody (111545144; Jackson ImmunoResearch).

Validation The primary antibodies have been widely used in rodents, and have been validated in birds. 
http://www.emdmillipore.com/US/en/product/Anti-Tyrosine-Hydroxylase-Antibody,MM_NF-AB152 
http://www.immunostar.com/shop/antibody-catalog/dbh-dopamine-beta-hydroxylase-antibody/ 
https://www.thermofisher.com/antibody/product/GFP-Antibody-clone-3E6-Monoclonal/A-11120 
In our study, the antibody for TH labeled large cell bodies in VTA, indicating it labels dopaminergic neurons. In our study, the 
antibody for DBH labeled many neurons in the locus coeruleus, demonstrating its validity as a marker for noradrenergic neurons.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Results were collected from adult (>80 d post hatch) male zebra finches (Taeniopygia guttata).

Wild animals Not used.
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Field-collected samples Not used. 

Ethics oversight All experiments were performed in accordance with a protocol approved by Duke University Institutional Animal Care and Use 
Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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