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The striatum is critical for making decisions based on pre-
dictions of future reward. These predictions can be updated by
brief pulses of dopamine, encoding reward prediction errors.
However, it is unclear how this mechanism handles the need to
generate predictions over multiple time horizons: from seconds
or less (if singing a song) to potentially hours or more (if hunting
for food). Here we monitor and model dopamine pulses across
distinct striatal subregions, and find that these reflect predic-
tions over distinct temporal scales. Dopamine dynamics sys-
tematically accelerated from ventral to dorsal-medial to dorsal-
lateral striatum, in the tempo of their spontaneous fluctuations,
their integration of prior rewards, and their discounting of fu-
ture rewards. In this way parallel striatal circuits can achieve a
more comprehensive set of value computations, to guide a broad
range of reward-related behaviors.
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Introduction
How much should we care about the future? It makes sense
to discount rewards that are far away in time - among other
reasons, they are less certain to occur at all (1). Yet some
worthwhile rewards take time and work to acquire. We must
not discount such delayed rewards too quickly, to maintain
motivation and avoid choosing less favorable, but faster, grat-
ification. Excessive discounting - i.e., failure to maintain a
sufficiently long time horizon - has been reported in a range
of human psychiatric disorders (2), notably drug addiction
(3).

The striatum is a key brain node for the maintenance
and use of reward predictions (“values”; (4, 5). When these
values are found to be inaccurate, a reward prediction error
(RPE) is generated. RPEs can be encoded by brief (“phasic”)
increases in the firing of midbrain dopamine (DA) cells (6–
10). The corresponding pulse of striatal DA release (11, 12)
may engage striatal synaptic plasticity (13, 14) to update
stored values.

DA RPEs have been classically considered a unitary
signal that is broadcast globally across striatum and frontal
cortex (6). However, a single RPE signal implies a single un-
derlying value, with a single time horizon. A single time hori-
zon might struggle to accommodate the range of decisions
that we and other animals need to make (15). For example,

during rapid production of motor sequences (e.g. birdsong)
the relevant time horizon may be a fraction of a second (16)
but while foraging for food an appropriate time horizon may
be orders of magnitude longer (1). Evaluation using multiple
discount factors in parallel can better account for behavior
(17, 18) and also improve performance of artificial learning
systems (19, 20).

Furthermore, there is now substantial evidence for het-
erogeneity of DA cell firing (9, 21), and DA release across
distinct striatal subregions (12, 22–28) that are components
of distinct large-scale loop circuits (29). These loops are pro-
posed to serve as distinct levels of a hierarchical reinforce-
ment learning architecture (30) with more dorsal/lateral stri-
atal subregions concerned with specific motoric details while
more ventral/medial areas help to organize behavior over
longer time scales (31). Theoretical studies have proposed
a corresponding gradient of temporal discount factors across
striatum (17) and there is evidence for graded discounting
from human fMRI (32). Yet how DA signals in distinct stri-
atal subregions reflect the use of different time horizons has
not been examined, to our knowledge.

We compared DA dynamics across multiple striatal sub-
regions in both instrumental and Pavlovian tasks, with a focus
on phasic RPE coding. We found systematic variation in both
the tempo of spontaneous DA fluctuations and in the patterns
of cue-evoked responses. We show that these patterns can
be largely explained by a change in the discount rate for the
underlying reward predictions, consistent with a portfolio of
time horizons for decision-making.

Results
We used fiber photometry of the fluorescent DA sensor
dLight1.3b (12, 34) to observe DA release fluctuations in the
striatum of awake, unrestrained rats. We focused on three
standard subregions (Fig. 1A): dorsolateral (DLS), dorsal-
medial (DMS) and ventral (VS). These receive distinct pat-
terns of cortical input (35) and are often considered to have
distinct “motor”, “cognitive” and “limbic” functions respec-
tively (36, 37).

We first examined spontaneous DA fluctuations, uncon-
strained by task performance. DA signals showed clearly dis-
tinct dynamics in each subregion (Fig. 1B), changing most
rapidly in DLS and most slowly in VS (Fig. 1C). When pre-
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Fig. 1. Dopamine tempo depends on striatal subregion. A, A rat brain atlas section (33), showing approximate locations of fiber optic tips (circles) within striatal subregions.
Blue circles indicate the locations for the recordings in B, and black-filled circles indicate locations for VS bandit task recordings (12). For further details, see Supplementary
Figure 1. B, Example showing simultaneous, raw dLight photometry (470nm) from each subregion in an awake unrestrained rat, showing activity outside of specific task
performance. Green traces indicate dopamine signals, grey traces indicate corresponding control signals (interleaved 415nm measurements). Occasional random deliveries
of sugar pellet rewards are marked as “Click!” (familiar food hopper activation sound). Scale bars: 1s, 1% dF/F. Recording locations are marked by filled-in circles in A. C, left,
Average autocorrelogram functions for spontaneous dLight signals in each subregion. Bands show± SEM, and darker lines indicate best-fit exponential decay for the range
40ms to 200ms. Data are from n=10 rats over 15 recording sessions each; fiber placements n=5 DLS, n=4 DMS, n=6 VS). Right, decay time constant depends on subregion
(ANOVA: F (2,12) = 50.3,p = 1.5× 10−6). D, Left, average dLight signal change after an unexpected reward click; right, duration (at half maximum) of signal increase
depends on subregion (ANOVA: F (2,12) = 24.0,p = 6.5×10−5).

sented with a familiar, but unexpected, reward cue - the click
of a hopper dispensing a sugar pellet - all three subregions
showed a transient DA response (Fig. 1D). This pulse lasted
longest in VS, and was briefest in DLS (Fig. 1D). Prior stud-
ies using voltammetry and this same reward cue found DA to
be evoked selectively in VS (22), but our use of dLight may
have revealed DLS/DMS responses that are too brief to read-
ily detect with voltammetry. Briefer DA signals in more dor-
sal regions are consistent with studies showing faster rates of
DA uptake, across species (38–40), although this alone ap-
pears insufficient to explain the highly distinct spontaneous
DA patterns in simultaneous recordings (Fig. 1B).

We then considered how this reward cue response is af-
fected by recent reward history, using an instrumental “ban-
dit” task (Fig. 2A; (12, 27). Well-trained rats made leftward
or rightward nose-pokes, and as they entered the chosen side
port (“Side-In”) they sometimes heard the food hopper click
(reward probabilities varied from 10-90%, in blocks). We
previously reported that at reward delivery, both VTA DA
cell firing and VS DA release scale with RPE - i.e. they are
greater when reward expectation is lower, due to fewer re-
cent trials being rewarded. We now also observed positive
DA RPE coding in DLS and DMS (Fig. 2B), although the DA
pulse was briefer in DMS compared to VS, and again remark-
ably brief in DLS (Fig. 2C; half width 135 ± 29ms S.E.M.).
On omission trials, DA dipped in all three subregions, and the

duration of this dip was also subregion-dependent (Fig. 2D).
Despite being present in each subregion, the DA pulse

was not a “global” RPE signal, since it did not reflect the
same underlying value in each subregion. Expectation of fu-
ture reward can reflect past reward history over a range of
possible (retrospective) time horizons (41, 42). We estimated
the time horizon used for the DA RPE signal, using first a
time-based leaky integrator of rewards (43). This model has
a single parameter τ : larger τ corresponds to a longer time
horizon, allowing rewards to better summate over multiple
trials (Fig. 2E). For each fiber location, we determined the
τ that produced the strongest correlation between DA pulses
and RPE. We observed a systematic relationship to location:
best-fit τ was shortest in DLS, intermediate in DMS, and
longest in VS (Fig. 2F), consistent with a time horizon spec-
trum. As an alternative estimate of value time horizon (8),
we considered how quickly or slowly values are updated from
trial-to-trial: smaller updates result in values being dependent
on the outcome of a longer history of previous trials. Using
a simple, trial-based delta-rule model (44) we determined the
learning rate α that maximized DA: RPE correlations. Best-
fit α was highest in DLS and lowest in VS (Fig. 2G), again
indicating that VS is concerned with rewards integrated over
more prolonged time frames.

The RPE theory of phasic DA is based in large measure
on DA cell responses to Pavlovian conditioned cues that pre-
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Figure 2. Dopaminergic prediction errors depend upon
subregion-specific reward history timescales.
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Fig. 2. Dopaminergic prediction errors depend upon subregion-
specific reward history timescales. A, Event sequence in the bandit
(trial-and-error) task. Rats discover if the current trial is rewarded at Side-
In, when the food hopper may (or may not) click. B, Mean dLight DA signals
aligned on the Side-In event. Data for DLS and DMS were recorded simul-
taneously from n=5 rats, each with one fiber in each target. VS data is from
n=10 fibers in 7 distinct rats. Signals are broken down by recent reward
rate (in terciles), with higher reward rate in brighter colors. After Side-In,
signals are further broken down by rewarded (red) and unrewarded (blue)
trials. Histogram above each plot shows the fraction of signals that signifi-
cantly depended on reward rate (linear regression, p<0.01), consistent (af-
ter Side-In) with RPE coding. Reward rates were calculated using a leaky
integrator of reward receipts (see Methods and E below), choosing the
tau parameter for each subregion separately to maximize RPE coding (fits
to behavior or alternative models of reward prediction gave similar results,
Supplementary Fig. 2). The bump before Side-In (most prominent for DLS)
is the response to the Go cue, smeared by variability in reaction and move-
ment times. C, The duration of the DA peak significantly varies by subre-
gion (one-way ANOVA, F (2,18) = 25.2,p= 8.23×10−6; measured at
half-maximum on rewarded trials in the 1s period after Side-In). D, as C but
for DA pause duration (one-way ANOVA, F (2,18) = 5.64,p = 0.014;
unrewarded trials, half-minimum, 4s after Side-In). E, Top, illustration of
leaky integrator estimation of reward rate, for an example sequence of tri-
als (R = rewarded, U = unrewarded) and the tau decay parameter set to
either 100 or 800s. Bottom, estimating reward expectation for the same
example sequence using a simple delta-rule model, with one update per
trial and learning rate parameter set to either 0.1 or 0.5. F, The leaky-
integrator τ that maximizes correlation between RPE and DA after Side-in
significantly varies by subregion (one-way ANOVA, F(2,18) = 7.99, p =
0.0039). G, The delta-rule learning rate α that maximizes correlation be-
tween RPE and DA after Side-in significantly varies by subregion (one-way
ANOVA, F (2,18) = 11.62,p = 0.0007). The strongest correlations are
seen in DLS with a shorter time horizon (small τ , or large α) and in VS
with a longer time horizon (large τ , or small α).

dict future rewards (6, 10). Such responses are diminished
when the rewards are more distant, in a manner consistent
with temporal discounting (45, 46). We therefore examined
DA cue responses in a Pavlovian approach task (Fig. 3A).
Auditory cues (trains of 2, 5, 9 kHz tone pips) predicted sugar
pellet delivery a few seconds later with distinct probabilities
(75, 25, 0%; see Methods). Each trial presented one of the
cues, or an uncued reward delivery, in random order, with a
15-30s delay between trials. Rats were trained for 15 days
(each day had 60 trials of each type). Early on, all cues in-
creased the likelihood of food hopper entry (Fig. 3B), con-
sistent with generalization between cues (47). However, over
the course of training (3600 trials total) rats showed increas-
ing discrimination, entering the food hopper in proportion to
cued reward probability (Fig. 3B).

Strikingly-different phasic DA patterns were seen for
each subregion (Fig. 3C,D; Supplementary. Fig. 3). In well-
trained rats, DMS DA showed strong RPE coding at cue on-
set (Fig. 3C). Specifically, the 75% cue produced a strong
DA pulse, the 25% cue a much smaller pulse, and the 0%
cue a transient dip in DA. VS cue responses also scaled with
RPE but showed worse discrimination between cues, particu-
larly on early training days, and remained positive for all cues
throughout training. Concordant results of VS DA increases
to a learned 0% cue (CS-) have been previously reported, and
attributed to generalization between cues (6, 48). Finally, in
DLS the predictive cues evoked much smaller DA responses
(relative to unpredicted reward delivery). This did not simply
reflect a failure of DLS-related circuits to learn: the DLS DA
pulse at reward delivery was substantially diminished if pre-

ceded by the 75% cue (Fig. 3C), consistent with an acquired
reward prediction.

We reasoned that these subregional differences could
reflect distinct time horizons for value computations. If fu-
ture rewards are discounted especially fast in DLS-related
circuits, even a brief delay would substantially diminish the
value indicated by cues (Fig. 4A). To assess this idea we
turned to computational models that address the evolution
of value within trials. We first applied a standard, simple
model in which the cue-reward interval is divided into a reg-
ular sequence of sub-states (the “complete serial compound”,
CSC; (49). Over the course of learning, value propagates
backwards along the sub-state chain (50). As expected, when
we compared model versions with distinct discount rates (γ),
rapid discounting reproduced the DLS pattern of smaller cue
responses (Fig. 4B-D) despite a cue-dependent response to
reward delivery (Fig. 4B). Including overlap between cue
representations allowed the CSC to also reproduce the gener-
alization between cues early in training (Fig. 4D).

However, our CSC model of the cue-reward interval
could not readily account for the slower, poorer cue discrim-
ination in VS (Fig. 4C), and is incapable of reproducing the
negative response to the 0% cue we saw in DMS. This model
is not designed to handle prolonged time horizons that might
span multiple trials (15). Furthermore, the splitting of experi-
ence into discrete, equally-fine sub-states becomes ever more
artificial as inter-trial intervals get larger and more variable
(51, 52).

We therefore turned to an alternative approach for esti-
mating the evolution of values, using recurrent neural net-
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Figure 3. Subregion-specific dopamine responses to reward-predictive cues
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Fig. 3. Subregion-specific
dopamine responses to
reward-predictive cues. A,
Top, the Pavlovian task consists
of four trial types, selected at
random, with differing reward
probabilities. Bottom, after train-
ing cues increase anticipatory
head entries into the reward
port (fraction of trials, mean
± SEM), and this scales with
reward probability. Data shown
are averages from training days
13-15, for n = 10 rats. B, During
early training days rats increase
their behavioral responses to
all cues, before progressively
learning to discriminate between
cues (error bars: SEM). Points
show average head entry over
a 0.5 s epoch just before cue
onset (black) or just after cue
offset (colors; i.e. immediately
before the time that reward
could be delivered). C, Average
dLight signal change for each
trial type after training (days
13-15, n = 10 rats with fibers
in DLS (n = 5), DMS (n = 4)
and VS (n = 7). Solid lines =
rewarded trials, dotted lines =
unrewarded. D, Time course
of dopamine increases to each
cue in each subregion over
training (mean ± SEM). For
responses on individual trials
on the first day of training, see
Supplementary Figure 3.

works (RNNs; (53, 54). In our RNN model (Fig. 5B;
see Methods), multiple sub-networks each use reinforcement
learning to generate distinct values in tandem (55), but with
distinct discount factors (56). The model has no discrete
states and time is not explicitly represented, but rather is im-
plicit within network population dynamics (57). With the
simple assumption that time horizon increases from DLS to
DMS to VS, the RPEs generated by the model recapitulated
key features of the rat striatal DA pulses (Fig. 5C,D). These
include the diminutive DLS responses as before, but also the
negative DMS response to the 0% cue, and poor VS cue dis-
crimination compared to DMS (especially earlier in training).

With extended RNN training the “DLS” and “DMS” re-
sponses to cues remained relatively stable, but “VS” cue dis-
crimination continued to improve, eventually also acquiring
negative RPE responses to the 0% cue (Fig. 5; Supplemen-
tary. Fig. 4). In other words, a discount factor very close
to 1 made learning slow, consistent with prior observations
in reinforcement learning (58). With hindsight, this made in-
tuitive sense. If a time horizon encompasses many trials, it
will include multiple rewards regardless of which cue is pre-
sented (Fig. 5A). Discriminating between cues is therefore
harder, and slower to learn. By contrast, if the time horizon
for DMS is on the order of one trial, the average outcomes
following distinct cues are very different (closer to the nomi-
nal 75, 25,%) and so learning the distinct associated values is

much less challenging.
The idea of distinct time horizons thus provides a con-

cise explanation for the subregional differences in Pavlovian
cue-evoked DA pulses. DLS responses are weaker because
the cues indicate reward that is too far away in time, given a
short time horizon. VS responses are slower to discriminate,
because the rewards that follow each cue are not very dif-
ferent, over a long time horizon. And DMS shows stronger,
well-discriminating responses because its intermediate time
horizon best matches the actual time scale of predictions pro-
vided by the Pavlovian cues.

Discussion

Our overall conclusion is that, across a range of behavioral
contexts, DA pulses in distinct striatal subregions reveal a
spectrum of underlying time scales for evaluation. This sup-
ports the proposal that parallel cortical-basal ganglia circuits
organize behavior over distinct time scales (30, 31, 59, 60)
that are also apparent in the dynamics of single neuron fir-
ing (61, 62). DLS microcircuits appear to be specialized
for faster information processing, with features including
faster DA reuptake and a higher proportion of fast-spiking
interneurons to dictate fine timing (63). Conversely, more
prolonged representations in VS circuits (64) may be impor-
tant to achieve learning over longer time horizons (59). Some
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Fig. 4. Fast temporal discount-
ing can explain weaker DLS cue
responses. A, Top, faster tempo-
ral discounting erodes the value in-
dicated by the onset of a reward-
predictive cue, even if the reward is
certain to appear. Bottom, in the
CSC model the cue-reward interval
is divided into a fixed set of brief
sub-states (we used 100ms dura-
tion). B, Values, and correspond-
ing temporal-difference RPEs, for
the CSC model after training in the
Pavlovian task (step 3800). Discount
factor γ was set to 0.95 (light green,
“fast”), 0.99 (mid-green), or 0.9999
(dark green, “slow”). C,Close-up of
the CSC RPE response to the 75%
cue. Even if the cued reward prob-
ability is high (75%), RPEs at cue
onset are weaker when the discount
factor is lower (RPEs at reward de-
livery are unchanged). D, Develop-
ment of RPEs at cue onsets with
training. Note that cue discrimination
after training is larger if γ is closer
to 1 (plotted in more detail in Sup-
plementary Fig. 4). Overlapping
cue representations cause this CSC
model to produce a positive RPE to
the 0% cue early in training, but this
eventually fades to zero.

studies using fMRI have suggested that VS circuits discount
especially rapidly (32, 65) and may therefore promote impul-
sive behavior. By contrast, our results are consistent with a
large body of literature demonstrating a critical role for VS in
avoiding maladaptive impulsive behavior (66, 67), by instead
promoting work to obtain delayed rewards (68, 69).

We used a standard systems neuroscience approach:
a behavioral session with many individual trials, and cues
that are meaningful for that specific trial. But our results
emphasize that animals, and their neural sub-circuits, do
not necessarily process information in a corresponding trial-
based manner (70). The notion that VS-related circuits use
a time horizon for reward that can span many trials may ex-
plain other, previously-puzzling observations. In particular,
voltammetry studies have observed especially large VS DA
transients as each session begins (e.g. (71). This makes sense
if - from the VS perspective - the onset of the first trial in-
dicates that the animal is likely to receive multiple rewards
“soon”, across multiple trials.

However, some features of our signals remain to be ac-
counted for. First, our novel auditory cues simultaneously
evoked a positive DA response in VS, and a negative response
in DLS (Fig. 3D), even on the very first presentation (Supp.
Fig. 3; for distinct results, see (26)). DA increases to novel
cues have been previously ascribed to a “novelty bonus” (72),
which can accelerate learning(73). A novelty bonus may be
especially helpful for VS when facing the challenging prob-
lem of learning values over longer time horizons. Why DLS
should instead show a “novelty penalty” is less clear, but
may reflect DLS involvement in motor learning with forward
models (74). If DLS-related circuits are comparing the sen-

sory feedback from actions to an intended template (such as a
tutor bird’s song), then a novel cue would likely be classified
as worse-than-expected (i.e. a negative RPE; (16).

Second, striatal subregions can differently care about
other aspects of behavior. As some examples: DA in DLS
responds relatively more strongly to Go cues (Fig. 2B); DA
in DMS seems to be preferentially engaged with contralat-
eral movements (24, 75); and DA in VS preferentially scales
with value during approach behaviors (12, 27, 76). Third,
the magnitude of learned DMS response to cues was larger
(and more variable) than we would expect for an RPE with
intermediate time horizon (Fig. 3C) - indeed sometimes ex-
ceeding the response to unpredicted reward. Each of these
findings merits further investigation.

Our RNN model describes how temporal discount fac-
tors sculpt values (and hence RPEs), but does not provide
a detailed mechanistic account of how cortical-basal gan-
glia loop circuits manage the passage of time and learning
over delays. Learning with short time intervals (subsecond-
seconds) can be supported by eligibility traces (14), sequen-
tial activity patterns (77) and potentially interactions with
cerebellum (78). Longer delays to reward pose a more chal-
lenging problem of credit assignment, that may be mitigated
by interactions with the hippocampus and off-line replay of
experiences (79).

Using multiple sub-agents with distinct discount factors
may be an optimal strategy in a complex and changing en-
vironment (42, 80). However, this creates the challenge of
how to appropriately integrate multiple, conflicting predic-
tions (81), and can drive apparently irrational behavior. Even
if individual sub-agents simply discount future rewards at a
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constant rate (exponential discounting), collectively they can
display a declining discount rate (approximately hyperbolic;
(17). This inconsistency is a feature of animal and human
economic behavior: choices show increasing impatience as
rewards become more imminent (82, 83). Such inconsisten-
cies may be an unavoidable price we have to pay, in exchange
for a discounting spectrum that enables us to efficiently learn
adaptive interactions with a complex world.
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Methods

Animals and Behavior. All animal procedures were approved by the University of California, San Francisco Animal Care
Committee. Rats were adult wild-type Long-Evans males, bred in-house, maintained on a reverse 12:12 light : dark cycle and
tested during the dark phase. All recordings were performed in an operant chamber (Med Associates), and details on both
behavioral tasks have been published previously (12, 27). For the Pavlovian task each cue tone (2, 5 or 9kHz) was presented as
a train of pips (100 ms on, 50 ms off) for a total duration of 2.6 s followed by a delay period of 500 ms. Trials with one of the
three cues, or an unpredicted reward delivery, were delivered in pseudorandom order with a variable inter-trial interval (15–30 s,
uniform distribution). Bandit task sessions used the following parameters: left–right reward probabilities were (independently-
varying, randomly-selected) 10, 50 or 90% for blocks of 35-45 trials; hold period before the Go cue was 500–1,500 ms (uniform
distribution). The mean number of trials was 315 (range: 216-407).

Virus and Photometry. We used a viral approach to express the genetically-encoded optical DA sensor dLight1.3b (34).
Under isoflurane anesthesia, 1 µl of AAV9-CAG-dLight1.3b (2× 1012 viral genomes per ml; Vigene) was slowly (100 nl/min)
injected (Nanoject III, Drummond) through a glass micropipette targetting multiple striatal subregions: ventral (AP: 1.7, ML:
1.7, DV: 7.0 mm relative to bregma), dorsomedial (AP: 1.5, ML: 1.8, DV: -4.3) and dorsolateral (AP: 0.84, ML:3.8, DV:-
4.0). During the same surgery optical fibers (400 µm core, 430 µm total diameter) attached to a metal ferrule (Doric) were
inserted (target depth 200 µm higher than AAV) and cemented in place. Data were collected >3 weeks later, to allow for dLight
expression. For dLight excitation blue (470 nm) and violet (405 nm; isosbestic control) LEDs were alternately switched on
and off in 10ms frames: 4ms on and 6ms off (84). Excitation power at the fiber tip was set to 30 µW for each wavelength.
Both excitation and emission signals passed through minicube filters (Doric) and bulk fluorescence was measured with a
femtowatt detector (Newport, Model 2151) sampling at 10 kHz. Time-division multiplexing produced separate 470 nm (DA)
and 405 nm (control) signals, which were then rescaled to each other via a least-square fit (85). For simultaneous recording of
three areas we used a Neurophotometrics system (86); technical details were very similar except that the control wavelength
was 415nm and detection was camera-based, sampling at 1kHz. Fractional fluorescence signal (dF/F) was then defined as
(470–controlfit)/controlfit. For all analyses this signal was downsampled to 30 Hz and smoothed with a five-point median
filter. For each Pavlovian recording session DA activity was normalized to the mean peak uncued click response in that session.
We removed from analyses 3 fiber placements that produced consistently weak signals (2 DMS, 1 DLS), and we also excluded
individual sessions for which the peak response was less than one standard deviation (Z < 1; 3 of 270 sessions excluded, 2 VS,
1 DMS). For autocorrelation analysis, we had an additional inclusion criterion of minimum dLight signal strength. This was
defined as an average (across sessions, post isosbestic correction) standard deviation Z > 0.5% dF/F, measured in a window
-10 to -1s before cue onsets, and resulted in one VS fiber placement being excluded. DA activity at cue time was estimated as
the maximum or the minimum within a half second window after cue onset, whichever had the larger absolute value; results
were not substantially different if we instead used average DA in this window (data not shown).

Histological confirmation. To verify probe placement post-mortem, animals were perfused transcardially with PBS and then
4% PFA. Implants were taken out and brains were extracted and postfixed in 4% PFA for 24 h, then placed in 30% sucrose in
PBS for >48 h and sectioned at a 100µm thickness with a microtome. We used immunofluorescence staining to visualize dLight
expression. Brain sections with probe placement were identified, blocked in a 0.4% Triton X-100 solution with 5% normal goat
serum (NGS) for 1 h at room temperature, followed by an overnight incubation in a rabbit anti-GFP primary antibody solution
(1:1000; abcam, ab290) in PBS in a cold room. Sections were washed three times in PBS for 10 min at room temperature and
incubated in an Alexa 488-conjugated goat anti-rabbit secondary antibody solution (1:250) in PBS for 1 h at room temperature.
Finally, sections were washed six times in PBS for 5 minutes at room temperature and then mounted onto glass slides and
coverslipped using Fluoromount-GTM Mounting Medium, with DAPI. Fluorescent images were taken using a fluorescence
microscope (Keyence BZ-X710) with a 2x objective lens. Fiber tip locations from both hemispheres were projected onto the
same side in atlas space.

Computational Models.

Trial-level models. For the bandit task we estimated reward rate using a time-based leaky-integrator. Reward rate was incre-
mented by 1 at each time the rat received a reward, and exponentially decayed with time constant τ. τ was varied between
1-2500s, to find the strongest negative correlation between reward rate and the DA peak after Side-In (within 0-1s, on rewarded
trials; i.e. positive RPE coding). To estimate learning rate, we used a trial-based delta-rule. This model tracks a state value that
is updated once per trial by V (t) = V (t− 1) +α ∗ (r−V (t− 1)); V(t) is the trial-based state value at trial t, α is the learning
rate and r is the outcome of each trial (0 or 1). By varying the value of α between 0 and 1 (in 0.01 steps) we found an optimal
value for each DA signal that would minimize the correlation between state value and peak DA signal in a 1s window after
Side-in.
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Real-time models. The CSC model is a standard temporal-difference model of conditioning (49). Values are defined as a linear
function of features x and weights w, Vt(x) = wtx=

∑n
i=1wt(i)x(i), where n is the time steps in a trial. The vector x is non-

zero only at the tth element at time step t after cue onset, i.e., x(i) = δit, where δit is the Kronecker delta function. In addition
to activating a single distinct feature for each cue, we also included shared features activated by any of the three cues, to allow
for generalization. In the results presented we used a single shared feature, but increasing the number of shared features did not
qualitatively affect results (not shown). The weights w update according to w(t+1) = wt+αδtet, where α is the learning rate
(we used α= 0.01) , δt is the RPE and et is an eligibility trace. The RPE is defined as δt = rt+γVt(xt) −Vt(x(t−1)), where
γ is the discounting factor. The eligibility trace et is included to accelerate learning and updated by et+1 = γλet+xt, where
λ is a decay factor (we used λ= 0.98). The CSC model was run separately for each discount factor.

The RNN model, based on an advantage actor-critic architecture (87), is composed of LSTM units (88). These are orga-
nized as three sub-networks (“DLS”, “DMS”, “VS”) of 32 nodes each, with internal recurrent connections but without direct
connections between sub-networks. Each sub-network receives the same copy of the sensory inputs at each time point, and
generates its own value estimate using a distinct discount factor. All three sub-networks project to the same policy compo-
nent, together generating the probability for taking an action (either “poke” or “no-poke”). These probabilities are sampled to
determine the action at each time step. We used a time step of 100 ms.

The sensory inputs include the food delivery click (one input with 0 for no-click and 5 for click), auditory cues, and
background dimensions. Background dimensions (3 in number) are included to mimic the background or contextual inputs to
the network and are all set constantly to 1. The auditory cues consist of 20 inputs, of which 3 inputs are the distinctive one-hot
features of the cues and the remainder are set to 1 during all cue presentations to produce similarity between cues.

At each time step the RNN model receives reward feedback. Before reward delivery, the reward is 0 for taking the action
“non-poke”, and -0.006 for taking the action “poke”, i.e., there is a small poking cost to discourage constant poking. If the poke
output is maintained on consecutive time steps, the cost is reduced to 10% of that for first poke. After the reward delivery click
in a rewarded trial, the reward is presented with a delay of 3 steps and the reward received for the first poke after the delay is
1.0.

The network was trained to perform the conditioning task by minimizing a loss function with three terms,

LθPPO = Et[LPt (θ)+βV L
V
t (θ)−βeL

e
t (θ)]

where the expectation was over a sequence of time steps with length T. We used T = 5000 steps, which encompasses multiple
(∼ 20) trials. We took the proximal policy optimization (PPO) for estimating the policy loss, which has the following form (89)

Lpt (θ) =min(ρtAt, clip(ρt,1− ε,1+ ε)At)

where ρt = πθ(at|st)
πold(at|st) is the probability ratio, whose value is clipped with a parameter ε. The advantage At includes three

components,
At =AGAEV S (t)+AGAEDMS(t)+AGAEDLS (t)

where each term is the generalized advantage estimator (GAE) (90) from one of the three sub-networks. Take the VS term as
an example and define δV St = rt+γV SV

V S
t+1 −V V St as the RPE at time t, then

AGAEV S (t) = δt+(γV Sλ)δt+1 + . . .+(γV Sλ)T−tδT
where T is the sequence length and λ is a parameter for GAE.

The value loss was given by

LVt = (rV St −V V St (θ))2 +(rDMS
t −V DMS

t (θ))2 +(rDLSt −V DLSt (θ))2

where rV St , rDMS
t , rDLSt are the expected discounted rewards within the sequence, given the corresponding discount factor

for each subnetwork. We used the value right after T to bootstrap the contribution from rewards beyond this sequence. For
instance, the expected reward for VS has the following expression

rV St = rt+γV Srt+1 + . . .+γT−1
V S rt+T−1 +γTV SVt+T

Since γV S is very close to 1, the expected reward for “VS” sub-network reflects contributions from multiple trials. Faster
discounting for “DMS” and (especially) “DLS” sub-networks results in minimal contributions from subsequent trials. The
entropy term Le represents the entropy of the probability distribution of taking the two actions and was added to encourage the
exploration. The parameters used were: βV = 0.8, βe = 0.001, γV S = 0.9999, γDMS = 0.99, γDLS = 0.95, λ = 0.98. The
weights of the network were updated using Adam method (91), with learning rate 0.0005.

Contributions. A.M. performed the behavioral photometry experiments and bandit task analyses. W.W. performed the com-
putational modeling and Pavlovian task analyses. J.B. developed the conceptual framework, oversaw the study, and wrote the
manuscript.
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Rat 1300

DLS, DMS

Rat 1366

VS

Rat 1278

DMS

Rat # DLS DMS VS DLS DMS VS
1065 *
1066 **
1088 *
1089 *
1105 *
1106 **
1107 *
1277 * * * *
1278 * * * *
1299 * * *
1300 * * * *
1301 * * *
1358 **
1359 **
1366 *
1381 *
1382 * *

Bandit PavlovianA B
Supplementary Figure 1. Photometry recording locations.

Supplementary Figure 1. Photometry recording locations. A, Histology examples showing optic fiber tip locations (circled) and
dLight1.3b expression (green), in DLS (top), DMS (middle), VS (bottom). B, Table showing distribution of fiber subregions included
for each task. Double asterisk indicates bilateral recording from the same subregion. Data from rats 1065-1107 were previously
reported(12)
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Supplementary Figure 2. RPE patterns with alternative value estimators.

Supplementary Figure 2. RPE patterns with alternative value estimators. Each column shows the same data and format as Fig.
2B, but broken down using different ways of estimating rats’ reward expectation. From left, “Reward Rate” uses a leaky integrator as in
Fig.2, but this time choosing time constant τ to produce the strongest (negative) correlation between reward rate and behavioral latency
to initiate the trial (as in (12, 27). “Rewards in the past 10 trials” is a simple count. “Actor-Critic” uses the Critic value from a trial-based
Actor-Critic model, fitting the Critic learning rate to behavioral latency and the Actor α, β parameters to left and right choices. Q-learning
uses a trial-based Q-value model, fitting the α and β parameters to choices and using Q (chosen action) as reward expectation.

12 | bioRχiv Wei Wei, Ali Mohebi, Joshua D. Berke | Striatal dopamine pulses follow a temporal discounting spectrum

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2021. ; https://doi.org/10.1101/2021.10.31.466705doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.31.466705
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B

dL
ig
ht
(n
or
m
al
iz
ed
)

0

1

0.5

-0.5

dL
ig
ht
(n
or
m
al
iz
ed
)

0

1

0.5

-0.5

dL
ig
ht
(n
or
m
al
iz
ed
)

0

1

0.5

-0.5

0

1

0.5

-0.5

0

1

0.5

-0.5

0

1

0.5

-0.5

0

1

0.5

-0.5

0

1

0.5

-0.5

0

1

0.5

-0.5

Time from cue onset (s)
0 2 4 0 2 4 0 2 4 0 2 4

Time from cue onset (s)
0 2 4 0 2 4 0 2 4 0 2 4

Time from cue onset (s)
0 2 4 0 2 4 0 2 4 0 2 4

75%

uncued

cue
onset

cue
onset

25%

0%

cue
onset Click! Click! Click!

75%

uncued

25%

0%

75%

uncued

Z

25%

0%

75%uncued 25% 0% 75%uncued 25% 0% 75%uncued 25% 0%

1

60
1

60
1

60
1

60

1

60
1

60
1

60
1

60

1

60
1

60
1

60
1

60 -1

0

1

2
DLS VSDMS

DLS VSDMS

Days 1-3 1-3

7-9

13-15

1-3

7-9

13-15

Days 7-9

Days 13-15

Supplementary Figure 3. Distinct development of DA cue responses in each subregion. A, single-animal examples showing
DA signals on each trial in the first Pavlovian session, including the very first exposure to the 75, 25, 0% cues. Note that in the DLS
example the response to all the novel cues is negative, while in the VS example all responses are positive. B, Average responses in
each subregion at three different learning stages (days 1-3, 7-9 or 13-15). In all subregions discrimination between cues increases with
time, but this is slow in VS.
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Supplementary Figure 4. Effects of extended model training
on cue discrimination with different discount factors.

RNN
no policy

Supplementary Figure 4. Effects of extended model training on cue discrimination with different discount factors. Top row,
cue-evoked RPEs in the CSC model at “early” (600 training steps), “middle” (1000) and “late” (3800) stages of learning, as a function of
γ, or equivalently the time parameter τ . ( γ = e−dt/τ , where dt is the time step size, here 100ms). Green dashed lines mark γ = 0.95,
0.99, and 0.9999. Note that for low γ all cue responses are small even after learning, since any potential reward is heavily discounted.
This CSC model initially shows a positive response to the 0% cue due to overlapping cue representations; over training this response
fades to zero (but cannot become negative). Middle row, same for an RNN model (early = 100, middle = 500, late = 900 training
steps). To isolate the effect of varying γ, this model variant used just a single network (a single γ) rather than three. Note that at early
and middle stages of learning, if γ is close to 1 the RNN model shows less discrimination between cues compared to intermediate γ,
consistent with the observed difference between VS and DMS. Bottom row, same as middle row, but also removing the Actor (poking)
component.
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